Nimba Western Range Iron Ore Project, Liberia

Biodiversity Conservation Programme 2011-2015

Butterflies of the Nimba Mountains, Liberia Report on the butterfly surveys (2013-2014) for ArcelorMittal, Liberia

Photo by André Coetzer

Szabolcs Sáfián

VERSION DATE: DEC 2014

ArcelorMittal Liberia Ltd.

P.O. Box 1275 Tubman Boulevard at 15th Street Sinkor, Monrovia Liberia

T +231 77 018 056

www.arcelormittal.com

Contents

E)	KECUT	IVE SUMMARY	3
1.	INTE	RODUCTION	4
2.	MET	HODS AND MATERIALS	5
	2.1	Survey areas and habitats	
	2.2	Survey methods	9
	2.2.1	Faunal surveys (non-standardised methods)	9
	2.2.2	Butterfly monitoring (standardised methods)	. 11
	2.2.3	Hilltop survey	
	2.2.4	Statistical analysis (species richness, abundance, diversity and similarity)	. 12
3.	RES	ULTS	. 13
	3.1	Diversity in the Nimba Mountains and notable taxa	
	3.1.1	New taxa	
	3.1.2	Nimba and Liberian-sub region endemics	. 16
	3.1.3	Further species of interest	
	3.2	Conservation value of the sampled areas-habitats	. 19
	3.2.1	ENNR	
	3.2.2	Community Forests	
	3.2.3	Other sites	
	3.3	Butterfly monitoring (Szabolcs Sáfián & Ádám Kőrösi)	
	3.3.1	Species richness and diversity	
	3.3.2	Abundance	
	3.3.3	Seasonal and elevational patterns	
	3.3.4	Hilltop Survey	. 35
4.	SUM	IMARY AND CONCLUSIONS	. 36
5.	REC	OMMENDATIONS	. 37
	5.1	Specific recommendations	
	5.2	Further research potentials	
	5.3	Other proposed programs	
RI	FFRF	NCES	
Αŀ	PPEND	IX I. Sample illustrations and descriptions for the proposed educational poster	. 43
		IX II. Abundance values of the recorded species in fruit-baited traps in wet and dry seasonent elevation zones	
		IX III. Adoliadini recorded during the hilltop survey on Mt. Bele. The species list is in orde ce	
ΑF	PPEND	IX IV. Checklist of the butterflies recorded in the Nimba Mountains 2012-2014	. 47

List of Abbreviations

AML ArcelorMittal Liberia
CF Community Forest

ENNR East Nimba Nature Reserve

ESIA Environmental and Social Impact Assessment

FDA Forestry Development Authority
GIS Geographic Information System

IUCN International Union for the Conservation of Nature LAMCO Liberian American Swedish Minerals Company

NTFP Non Timber Forest Products

RDA Redundance Analysis

TMF Tailings Management Facility

Acknowledgements

Szabolcs Sáfián is most grateful to his field assistants Martin Strausz, Ádám Kőrösi and Ágnes Horváth, also to Linda Dolo, Korvah Vayambah, Suah Saye who helped in various ways the field. The expeditions could not have been successful without the safe driving of Emmanuel and the delicious food prepared by Mamie Dolo.

Szabolcs Kókay drawn the beautiful illustrations for the proposed educational poster.

John Howell and Wing-Yunn Crawley professionally organised and supervised the butterfly surveys. This study could not be carried out without the continuous support of the Co-Management Committee of the East Nimba Nature Reserve and the Joint Community Forest Management Board of Gba, Blei and Zor Community Forests.

EXECUTIVE SUMMARY

A series of butterfly surveys resulted in 610 butterfly species recorded and positively identified from the Nimba Mountains and the surrounding lowland forest areas. Of these 479 species were recorded from the East Nimba Nature Reserve (ENNR). Beside the high butterfly diversity in the Nimba Mountains a number of endemic or restricted range species were also recorded: *Hypolimnas aubergeri*, *Euriphene taigola*, *E. leonis*, *Euphaedra aubergeri*. During the surveys several species later proved also new to science were found: *Aslauga larseni*, *Cephetola wingae*. *Stempfferia katikae*, *Stempfferia* sp. 2., *Aphnaeus mirabilis*, *A. nimbaensis*, *Pilodeudorix* sp. 1., *Pilodeudorix* sp. 2, *Pilodeudorix* sp 3., *Mesoxantha* sp.n., *Andronymus* cf. *fenestrella*. Many of these will probably prove restricted to the Liberian sub-region or even to the upland-sub-montane zone of the Nimba Mountains.

In order to establish a long term butterfly monitoring in the ENNR a proposed method was also tested using banana-baited traps along transects. Three transects were set in each of the three sampled elevational zones between 600 and 1370 metres, in each transects eight traps were used to capture butterflies for 14 day in each dry and wet seasons, using altogether 72 traps, operated for 28 days. The trapping resulted in 4203 specimens belonging to 116 species of fruit-feeding butterflies (mainly Satyrinae and Limenitinae in the Nymphalidae family). The results of the analysis (species richness, diversity, abundance, similarity) shown that the collected data is sufficient to community ecological comparisons and the methods used could be used also for long term monitoring of the fruit-feeding butterfly communities in the Nimba Mountains.

Based on the results, it is recommended that the ENNR and the surrounding lowland forests should be treated as a single ecological unit. More effective protection of ENNR would also be important to prevent poaching and illegal farming inside the protected area. Mt. Beeton (Gba Community Forest) and Mt. Bele (Blei Community Forest) also proved of high conservation importance hosting endemic and newly discovered species as well as strong populations of the IUCN red-listed Giant African Swallowtail - Papilio antimachus. The lowland forest area linking up Mt. Bele and the southern area of ENNR is an important corridor for butterflies and other wildlife, the rehabilitation of the Gbapa-Zortapa road is not therefore recommended. To support conservation of the butterflies and their habitats, eco-tourism activities could be organised in the Nimba Mountains, including butterfly-watching tours and volunteer research programs. implementation of such programs require infrastructural development, including the establishment of an eco-tourism-research centre. Further research programs are also proposed, including a radio-tracking project to study the habitat utilisation of P. antimachus and the in depth moth diversity study. An educational poster presenting butterflies of conservation importance and a Nimba butterfly atlas are also proposed.

Western Range Iron Ore Project, Liberia Biodiversity Conservation Programme, 2011-2015 Butterflies of the Nimba mountains, Liberia: Report on the butterfly surveys 2013-2014 for Arcelormittal Liberia

1. INTRODUCTION

A survey to assess butterfly diversity in ArcelorMittal, Liberia's (AML) Phase 2 in the Nimba Mountains (Western Range) was carried out in 2012. The study covered the still un-mined areas of Mt. Tokadeh, the proposed Tailings Management Facility (TMF) facilities near Gbapa and the proposed mining pits on Mt. Gangra and Mt. Yuelliton. The other aim of the study was to assess the butterfly fauna outside of the impact area, especially in the Gba Community Forest (CF), which could possibly serve as an offset for the biodiversity loss caused by mining activities. The assessment revealed that the butterfly diversity is not just outstandingly high in the surveyed areas, but various species of conservation concern and even species unknown to science have been recorded both in the impact area and in Gba CF. Interestingly, this was not fully reflected in the results of the previous biodiversity studies, which included also the East Nimba Nature Reserve (ENNR) and AML requested an in-depth re-assessment of the butterfly fauna of ENNR with special focus on the species of conservation concern recorded during the survey in 2012.

The in-depth survey began in the rainy season in 2013 and ended in January 2014. The author and assistants spent over 70 field days in selected localities within and around the ENNR. As part of the study, a butterfly monitoring scheme using fruit-baited traps was also tested, comparing fruit-feeding butterfly communities in three elevational zones in the ENNR. In this report results of the of the in-depth biodiversity survey are presented in detail, including records also from the previous butterfly studies. The methods and results of the test monitoring program are also discussed, with special focus on the establishment and sustainability of a long-term butterfly monitoring in the Nimba Mountains. Present study confirmed the previous assessment as the Nimba area is among the most important butterfly habitats in West Africa with outstandingly high butterfly diversity and a number or endemic or restricted range species. This report discusses various recommendations towards effective protection of the outstandingly rich butterfly fauna with the involvement of AML, the Forestry Development Authority (FDA) and local communities.

2. METHODS AND MATERIALS

2.1 Survey areas and habitats

In 2012 the butterfly survey focused on the proposed Phase 2 impact area in Tokadeh, Gpaba, Mt. Gangra and Mt. Yuelliton. Potential offset areas were also included, such as the lowland forests in Gba CF and Mt. Beeton. Based on the survey results in 2012, and assessment of the butterfly fauna in the surveyed habitats, a full inventory of the ENNR and butterfly diversity surveys in other CFs were proposed to be surveyed in 2013-14. The detailed list of surveyed areas (2013-14) and short description of the habitat types they represent are as follows. The survey localities are presented on Figure 1.

East Nimba Nature Reserve (ENNR)

LiberCell road and hilltops

Coordinates: 07°31'47.42"N 08°31'33.51"W

The area covers the forests along the road to the radio masts over 850 m and also the hilltops studied. Above 850 m the lowland forest that covers the lower slopes of the range of Mt. Nimba is replaced by upland forest and further up by sub-montane (*Parinari*) forest and secondary savannah grasslands. This latter vegetation type occurs mainly on the mined ridgelines and hilltops.

Blue Lake road

Coordinates: 07°33'14.23"N 08°29'53.15"W

The paved road to Blue Lake crosses through younger and old grown secondary forest, mainly lowland forest, probably with patches of upland forest in a smaller extent. The sampling was carried out mainly between 650-850 m, using the road verges and narrow smuggling or hunting footpaths. A few species were also recorded at Blue Lake in secondary grassland.

Secondary forest and farmland

Coordinates: 07°33'48.27"N 08°31'7.20"W

A path that follows a small stream from the old concentrator at lower elevations on the Blue Lake Road was sampled on several occasions. The path was mostly going through younger secondary forest, but many smaller banana farms were also present, showing continuous farming activities.

Grassfield

Coordinates: 07°28'25.69"N 08°34'0.02"W

Grassfield gained its name from the grassy air-strip lying just outside the ENNR, which was cleared and maintained by Lamco to transport goods by plane from Monrovia. Since the

Western Range Iron Ore Project, Liberia Biodiversity Conservation Programme, 2011-2015 Butterflies of the Nimba mountains, Liberia: Report on the butterfly surveys 2013-2014 for Arcelormittal Liberia

abandonment of the mines, the air-strip itself and the immediate surroundings have undergone a successional change and are now overgrown by taller shrubby vegetation and weeds. Still larger grassy patches exist, where no soil has formed on the graded rocks, maintaining the secondary savannah and its butterfly fauna. In contrast, the vicinity of the air-strip was covered with high forest until the recent exclusion of farmlands west of Gbapa village, due to construction of the Phase 2 TMF. Many families who previously utilised land in the TMF area have now moved to Grassfield and cleared forest for farming. The majority of the forest around Grassfield is now very degraded and only small mosaics remain to support the forest butterfly fauna.

Coldwater

Coordinates:07°24'47.56"N 08°35'27.31"W

The Coldwater area lies on the boundary between the ENNR and Blei CF. However it was easier for practical reasons to list the locality under ENNR because it is adjoined to the reserve, and list all Blei CF records from the upland zone of Mt. Bele. The Coldwater area covers lowland forest, both young and old secondary growth, also the patchy grasslands at the old log storage spot and the disturbed road verges along the track to Zortapa, where farmlands, fallow and younger secondary forest habitats are also present.

Gba Community Forest

<u>Bonlah</u>

Coordinates: 07°34'06"N 08°40'04"W

The degraded lowland forests around Bonlah were briefly sampled during trekking in and out of Mt. Beeton. The habitat is mainly active farm areas, fallows, young regenerating secondary growth and patches of mature lowland secondary forests.

Mt. Beeton

Coordinates: 07°31'52"N 08°39'22"W

Mt. Beeton was selected as one of the most interesting butterfly areas during the Phase 2 butterfly survey. The mountain is covered by old secondary lowland and upland forest, but the northwest-facing slope was burnt down straight to the highest summit, due to illegal burning of farms on its lower slopes some 8-10 years back. The vegetation is regenerating quickly, however illegal farming has not ceased yet and burning is still among the greatest threats to the forest vegetation.

Western Range Iron Ore Project, Liberia Biodiversity Conservation Programme, 2011-2015 Butterflies of the Nimba mountains, Liberia: Report on the butterfly surveys 2013-2014 for Arcelormittal Liberia

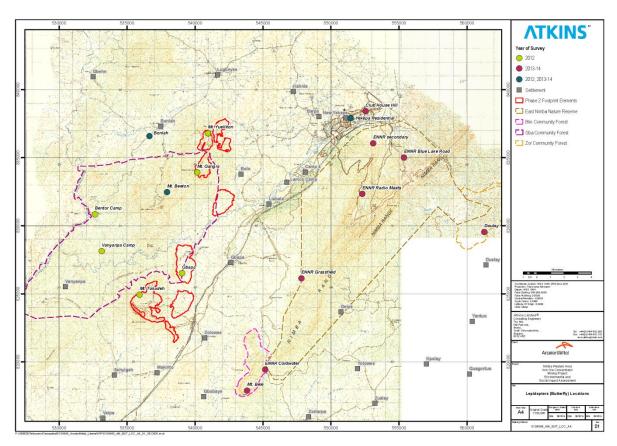
Mt. Bele (Blei Community Forest)

Coordinates: 07°23'57.3"N 08°36'10.2"W

Mt. Bele (basically equivalent to Blei CF) is the southernmost summit of the Nimba Mountains separated from the main mountain range by the Grassfield – Zortapa road. The mountain constitutes a horseshoe-shaped narrow ridgeline and the depression in the middle covered entirely by good quality forest. The summit and the higher sub-summits reach over 900 metres, covered by unique upland rainforest (many patches are probably primary), while others were previously logged, or damaged by storms and landslides.

Zor Community Forest (Dulay)

Coordinates: 07°30'16"N 08°26'40.95"W


This CF is one of the most intact lowland forests in the Nimba area, and it is contiguous with the ENNR in the north-east. The majority of the area is covered by mature secondary forest, which was logged during the civil conflicts, but according to local guides even primary patches are found further away from the old logging roads.

Yekepa residential area and Club House hill

Coordinates:07°34'48.47"N 08°32'0.91"W and 07°35'4.86"N 08°31'25.09"W respectively

As part of the biodiversity survey, we intended to sample all available habitat types, and therefore the parklands, the secondary grasslands and the disturbed fallow vegetation of Yekepa and along the road leading to the Club House were also sampled, including a small patch of young secondary growth woodlands at the pump house.

Figure 1. Butterfly survey localities in the Nimba Mountains. Yellow – only 2012. Red – 2013-14. Dark blue – 2012, 2013-14. The impact areas of Phase 2 are outlined by red continuous line. The ENNR and the community forests are marked with differently coloured dashed lines. A multi-layered, magnifiable PDF version of this map is available at ArcelorMittal Liberia, Biodiversity Conservation Program office, Yekepa.

2.2 Survey methods

2.2.1 Faunal surveys (non-standardised methods)

To record species richness in the various sampled habitats, conventional sweep-netting, visual observation and photography were used. The length of sampling varied from the habitat types and quality, but it could begin as early as 8.00 a.m. when weather permitted, and on various occasions the recording finished about 6.00 p.m. especially on hill-tops, open areas or at western-faced forest edges, where the sun still lit the vegetation late afternoon. Obviously, sampling was suspended in heavy rain or in full cloud cover (apart from emptying traps - see below), when all butterfly activities cease. As butterflies could occur basically everywhere, careful observation is necessary, also knowledge on the various behavioural specialties in the different groups, such as feeding-habits, resting etc. It is also important to identify ecologically important micro-habitats or temporarily utilised habitats, both of which are associated with various aspects of ecology and behaviour or butterflies. For example, male butterflies often appear on wet soil during the dry season, where they intake dissolved minerals. This phenomenon is commonly known as mudpuddling. Another important micro-habitat is a high point within the survey location, as male butterflies often congregate on the highest available point, waiting for passing females. Hilltopping cannot just reveal higher number of species recorded, but sometimes otherwise very rarely detected species can also appear on hilltops.

Figure 2. Surveying butterflies with conventional butterfly net (Photo: Erika Zakar).

Capture of butterflies with baited net-traps was also used to record fruit-feeding butterfly communities. Fermented banana bait was used to attract species in the Nymphalidae family both for diversity recording and during the test-baseline sampling period of the butterfly monitoring scheme. For more detailed information see below at butterfly monitoring.

Interestingly, using moth (light) traps to record butterflies could also collect important data as quite a few species groups are known to attend at artificial light. On several occasions 75 W energy saving bulb, run from a 1 kW portable generator was used to attract butterflies.

Beside recording imagos, butterflies were also found in larval stage. On several occasions butterflies were collected as caterpillars and were bred through "ex-situ", in plastic food storage boxes. They were provided the same food plants they were found on, until pupation.

Figure 3. Artificial light also attracts rare butterflies in Africa. It is an indication of crepuscular or nocturnal activities in a few butterfly groups (Photo: Erika Zakar).

2.2.2 Butterfly monitoring (standardised methods)

Butterflies or rather butterfly communities are often used as indicators of biological diversity and also of various ecological factors or habitats. To assess and monitor the quality of the forest habitats in the Nimba Mountains and to monitor changes in the butterfly community, a butterfly monitoring scheme was developed, using fruit-baited net-traps. The traps used were modified from IKEA's Fångst children's toy storage net (Fig. 4), where the separators between compartments were cut out, the holes on the side were covered by fabric and a gap for entrance was cut near the bottom of the net to allow entry of butterflies. These traps were hung along the transects with the mouth not higher than 10-15 cm from the ground. Traps were hung so as not touch vegetation or the ground to minimise other animals entering the traps, eating the bait or the captured butterflies. The traps were placed at a minimum distance of 30 metres from each other, the first and the last trap were at least 30 metres away from habitat edges (roads, habitat boundaries). Transects for monitoring were selected in three elevation zones: 1. lowland forest (500-650 m), 2. mid-elevation forest (850-950 m), 3. sub-montane (Parinari) forest (1150-1350 m). One transect comprised eight traps and three transects were established in each elevation zone, using altogether a total of 76 traps. In each transect, sampling started with setting and baiting traps, and continued for 15 consecutive days. The butterfly samples were taken from each trap every day during the sampling period and the banana bait was refreshed every fourth day, except in the case of heavy rain, when the bait had to be refreshed or changed the following day. All specimens from each trap were removed from the population (killed by pinching the thorax) to avoid bias of sampling by returning specimens and were stored in paper envelops until identification. The date of collecting and the trap ID was written on the envelope (e.g. T1/t1 - transect 1/trap 1). After identification, specimen data were entered in an Excel sheet for further analysis.

Figure 4. Modified Ikea trap baited with mashed banana (Photo: Ádám Kőrösi).

2.2.3 Hilltop survey

In order to evaluate hilltop habitats and the ecological speciation of butterflies using hilltops to locate mates, six sites (display grounds) were selected on the summit and a sub-summit of Mt. Bele (three on each hill-top) to observe the spatial and temporal pattern of butterflies in a standardised way. During the wet season survey, butterflies, belonging to Adoliadini (Nymphalidae) were observed for one day during their display activities to ensure the survey could be carried out during the dry season, when clouds do not interrupt full sunshine (as most butterflies, including Adoliadini are not active in cloudy weather). The actual survey was carried out in January, when Adoliadini were observed between 8.00 a.m. and 17.00 p.m. in several three-minute intervals in each site. During each three minute period, all specimens present were recorded, also their display position (the actual object the butterfly settled on) and the height of the sitting specimen from the ground. Spatial and temporal pattern were intended to draw from the data collected, unfortunately the survey had to be canceled due to unexpected cloudy weather at the end of December 2013 and the first week of January 2014.

2.2.4 Statistical analysis (species richness, abundance, diversity and similarity)

To evaluate results of the butterfly monitoring species richness and abundance were compared between transects in both seasons, including estimation of total species richness (species pool) for each transect in each elevational range in both seasons, using different estimators (CHAO1, CHAO2, ACE, Jacknife1, Bootstrap). Rarified species accumulation graphs were used to assess expected richness in the samples and also the intensity of sampling. Species diversity were calculated in each transect in both seasons, using various diversity indices: Shannon-Weaver, Fisher α , Simpson and Pielou's evenness index. Diversity values were compared by Rényi diversity ordering. Seasonality of butterflies were emphasized using abundance values of selected indicator species and abundance profiles of the butterfly communities in each sample. Seasonality and elevational pattern were assessed by redundance analysis (RDA), where correlation between principal components and environmental variables (constraints) were maximized. Dis-similarity (or ecological distance) between samples was analysed via cluster analysis, using Jaccard and Bray-Curtis similarity indices.

3. RESULTS

3.1 Diversity in the Nimba Mountains and notable taxa

During three field surveys in February-March 2012, August-October 2013 and November 2013 - January 2014 in the Nimba Mountains, Liberia 613 butterfly species were collected and identified. This number is higher than the recorded species richness in the Gola Rainforest National Park (576), which had the highest number of butterfly species recorded from a single location in West Africa, west of the Dahomey Gap (Sáfián 2013a). Actually, in the Nimba Mountains 77% of all butterflies found in Liberia were recorded (Sáfián unpublished), showing its ecological importance, also the high number or endemic or restricted range species (including several undescribed ones) confirms the role of the Nimbas as a biogeographically significant ecological unit, probably also as a former refuge area. It is important to mention that the surveys did not cover the montane grasslands and some of the high elevation forests (above 1500 m) in Guinea, which could host further butterfly species unique to the Nimba Mountains. Despite the high number of species recorded, it would be very difficult to assess the expected species richness of butterflies in the Nimba Mountains, since many species during the present surveys were recorded completely unexpectedly from this part of West Africa, and the occurrence of further undescribed species is also probable. Still, the butterfly fauna is expected to exceed 700 species in the Nimba Mountains in broader context (including also the lowland community forests at the foothills of the Nimba Massif and in the Western Range).

3.1.1 New taxa

During the surveys, a surprisingly high number of taxa collected, which certainly belong to undescribed species, others are similar to but differ from existing species. These most probably also represent undescribed taxa, but their specific status needs clarification, which could take several months or years, as the process includes examination of the type series of their respective relatives, which might be deposited in various European or African museum collections. The high number of undescribed taxa recorded also indicate that the Nimba Mountains probably host even higher species richness and endemicity of butterflies than was projected by the previous works (Condamin & Roy 1963, Larsen 2005).

Aslauga larseni Sáfián, 2015

Two males and a female of this most extraordinary new species were caught on the hilltop at the LiberCell telecommunication tower on the last days of August. It belongs to the small group (*A. ernesti*-group), which, apart from the one collected in the Nimba Mountains, consist of four other species between southern Congo, Northeastern Uganda, Cameroon and Ghana. All of them were found very locally on hilltops in upland-submontane areas. They usually fly during the wet season and are very rare.

Cephetola wingae Sáfián, 2015

A single specimen of this undescribed species was caught on the top of Mt. Beeton during the wet season survey. During the dry season visit it was also targeted and a small series was subsequently obtained also on Mt. Beeton. Two specimens were also found on the top of Mt. Bele. It might prove unique to the upland forests of the Nimba Mountains and other sub-montane areas in the Liberian sub-region.

Stempfferia katikae Sáfián, 2015

A large *Stempfferia* was collected in a small series on the top of Mt. Beeton during the dry season survey in December 2013. Examining long series of related species in the ABRI collection revealed that the species is undescribed. It might prove unique to the Nimba Mountains and the other montane areas in the Liberian sub-region.

Stempfferia sp. (Stempfferia cf. zelza)

A single female specimen of a small *Stempfferia* near *S. zelza* was collected at Coldwater. Examination of longer series of *S. zelza* in the ABRI also in SZS collection revealed that the Liberian specimen belongs to an undescribed taxon, but a single specimen might not be sufficient for description.

Iolaus cf. parasilanus Rebel, 1914

Three males and a female, resembling *I. parasilanus* were collected at Gbapa in the extreme dry season in 2012 at mud. Strangely, in appearance, the female is more similar to the Central African sub-species spp. *mabillei* than the West African ssp. *maesseni*. It could, therefore easily represent a distinct undescribed taxon, but its status needs clarification. Its only known locality was already damaged by the construction works for the TMF in 2013.

Pilodeudorix 1. sp. n (Pilodeudorix mano)

A single specimen of this most unique looking new species was caught in January along the Cellcom Road. As it was found in the sub-montane zone, it is possible that this species is endemic to the Nimba Mountains. The description of the species is in progress, along with other new *Pilodeudorix* discovered also during the Nimba surveys.

Piodeudorix 2 sp. n. (Pilodeudorix putu)

The first specimen of this new species was collected on Mt. Gangra in February 2012. Although it looked curious, but no sufficient material was available for a decision on its identity. Further material was caught during the 2013-14 surveys, when it was also found on Mt. Bele. The species is close to *P. aurivilliusi*, but is smaller and the black area in the forewing apex is broader, also the veins near the apex are strongly blackened. So far it is known from the sub-montane zone of the Nimba Mountains.

Figure 5. New species discovered during the butterfly survey in the Nimba Mountains: *Aslauga larseni* male upperside - A, underside - E, female upperside - B, underside - F, *Stempfferia katikae* male upperside - C, underside - G, *Cephetola wingae* male upperside - D, underside - H, *Stempfferia* sp. 2. female upperside - I, underside - M, *Pilodeudorix* sp. 1. male upperside - J, underside - N, *Pilodeudorix* sp. 2 male upperside - K, underside - O, *Pilodeudorix* sp. 3. male upperside - L, underside - P.

Pilodeudorix 3. sp. n. (Pilodeudorix intermedia)

This species was previously recorded from the unique upland forests of the Putu Range, but could not be properly identified due to insufficient material available. Another specimen was collected on the top of Mt. Gangra during the first survey, and was subsequently caught also on the ridge of Mt. Bele in December 2013.

Mesoxantha sp. (Mesoxantha liberiana)

A single specimen belonging to an unidentified species of *Mesoxantha*, close to the Central-East African *M. ethosea reducta* was recorded in the Gola Forest Reserves in Sierra Leone during a biodiversity survey in 2008 (Sáfián 2010). It was subsequently collected on Mt. Swa (Nimba County) as new to Liberia in 2012. During the present survey it was also found in the Zor Community Forest (Dulay). It most probably represents an

undescribed species, endemic to the Liberian sub-region of West Africa, which inhabits lowland forests rather than upland or sub-montane forest formations. It will be described in upcoming the revision of the genus.

Andronymus cf. fenestrella Bethune-Baker, 1908

The species is known from a couple of specimens collected by Claudio Belcastro in Sierra Leone and Guinea, but is not described yet. A single female specimen was also collected at Coldwater as new to Liberia during the wet season survey. It is probably endemic to the Liberian sub-region.

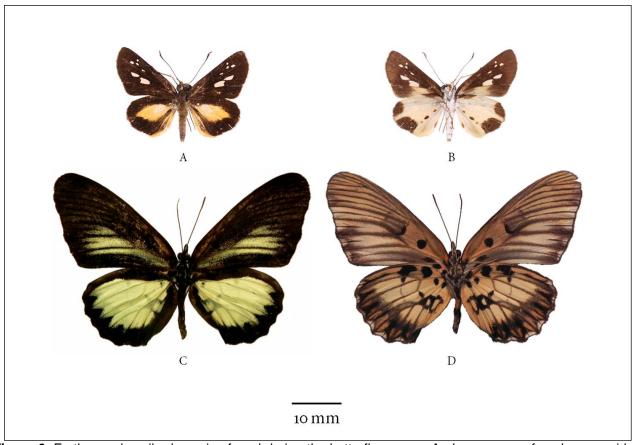
3.1.2 Nimba and Liberian-sub region endemics

Aphnaeus mirabilis Sáfián & Collins, 2013

The species was found in lowland forest at Gbapa during the butterfly survey for Phase 2 (Sáfián & Larsen 2012). No further specimens of this newly described species were found during the present survey. It is still known only from its type locality, which is inside the Phase 2 TMF area. Re-visiting the site revealed that the habitats around the type locality are already seriously damaged, if not completely destroyed by the earthworks for the Phase 2 TMF.

Aphnaeus nimbaensis Sáfián & Libert, 2013

The species was found on the top of Mt. Gangra during the butterfly survey for Phase 2 ESIA (Sáfián & Larsen 2012). It was subsequently found in the ENNR (LiberCell tower) (single specimens) and on the top of Mt. Beeton (several specimens observed hill-topping).


Uranothauma belcastroi Larsen, 1997

Liberian sub-region endemic species, which occurs only in sub-montane and montane habitats. It was previously known only from a few specimens collected in the Loma Mts. (Sierra Leone), the Nimba Mountains (Guinea, Ivory Coast) and on Mt. Péko (Ivory Coast). Boireau (2009) found it as new to Liberia in the ENNR. During the present survey it was found between 850 m and 1370 m at various localities (e.g. Blue Lake Road, Radio Masts) in the ENNR.

Hypolimnas aubergeri Hecq, 1987

According to our knowledge this species is strictly endemic to the Nimba area, the first series was collected near Danané in Ivory Coast. It was subsequently found also in the Guinea Nimbas, while the first Liberian specimens were collected by Boireau (2009) in Tokadeh mine. The present survey confirmed its presence also in the ENNR, both from Cellcom Road and Coldwater area.

Figure 6. Further undescribed species found during the butterfly survey. *Andronymus* sp. female upperside - A, underside - B, *Mesoxantha* sp. male upperside - C, underside - D.

Cymothoe hartigi Belcastro, 1990

This Liberian sub-region endemic species was found in the Phase 2 TMF area during the 2012 study, also in the Gba CF (Bonlah, Mt. Beeton). The most recent survey confirmed its presence also in the ENNR (Radio Masts).

Euriphene Iomaensis Belcastro, 1986

This Liberian sub-region endemic species was known only from a few localities in Sierra Leone and Ivory Coast, before it was found in Liberia (Brattström 2010). Its first record from the Nimba Mountains came from Mt. Tokadeh during the 2012 butterfly survey (Sáfián & Larsen 2012), but it was subsequently found also in the ENNR and the Blei CF during the present survey.

Euriphene taigola Sáfián & Warren-Gash, 2009

This Liberian sub-region endemic species was recorded during 2012 from the TMF area, also from the Gba CF (Sáfián & Larsen 2012). During the current survey its presence was also confirmed from the ENNR (Coldwater).

Euriphene leonis (Aurivillius, 1899)

This Liberian sub-region endemic species was previously found only in the Gba CF in the Nimba Area (Sáfián & Larsen 2012). The present surveys confirmed its presence on Mt. Bele (Blei CF) and at Coldwater (ENNR).

Euphaedra aubergeri Hecq, 1977

This strictly endemic species was known only from a small series collected near Danané (Ivory Coast), thus found only in the Nimba area. It was recorded as new to Liberia on the summit of Mt. Beeton.

Apallaga belcastroi Libert, 2014

A newly described species, which – according to present knowledge – is restricted to wet lowland forests of the Liberian sub-region (Type locality: Guma Valley, Freetown, Sierra Leone). Recent records indicate that the species is rather widespread in Liberia, known from Lake Piso, Gola National Forest, the Putu Range and the Nimba Mountains (Libert 2014).

Apallaga confusa occidentalis Libert, 2014

C. confusa is a newly described species (Libert, 2014); the ssp. *occidentalis* is restricted to the Liberian sub-region. It is known only from wetter types of forest in good condition, in Liberia, it was recorded from the Putu Range and the Nimba Mountains (Western Range).

Apallaga perconfusa Libert, 2014

A newly described species (Libert, 2014), which – according to present knowledge – is restricted to the Liberian sub-region. It is known only from a few confirmed recent records from eastern Sierra Leone and the Liberian, Nimba Mountains, Western Range (Mt. Tokadeh, Mt. Gangra).

Apallaga safiani Libert, 2014

A newly described species (Libert 2014), which is probably restricted to wet forests of the Liberian sub-region in good condition. In Liberia it was found only recently on Mt. Swa and in the Nimba Mountains displaying on hilltops (Sáfián 2014).

3.1.3 Further species of interest

Papilio antimachus Drury, 1782

Already in the report (Sáfián & Larsen 2012) P. antimachus was mentioned as one of the species of conservation concern, with unexpectedly high abundance in the Nimba Mountains (Western Range). During the present surveys special effort was made to map this species also in the ENNR, and we succeeded in detecting it at a number of new localities. We also identified hilltops, which are regularly visited by males as described in Sáfián (2013b). As P. antimachus is among the species with Data Deficient status on the IUCN redlist (www.iucn-redlist.org), and our studies indicate that P. antimachus could prove as an umbrella species in conservation areas, where no big mammals which are regularly

used as umbrella species (e.g. Forest Elephant) are present, further studies are proposed below to acquire more knowledge on the life-cycle and ecology of the species.

Iridana hypocala Eltringham, 1929

Iridana hypocala was among the most surprising records of the 2012 survey, as Ghana's Volta Region was known to be its western boundary of distribution. The species was recorded only from the summit of Mt. Gangra. The present survey confirmed its presence also from the summit of Mt. Beeton (Gba CF).

Pseudaletis jolyana Libert, 2007

This extremely rare and probably canopy-dwelling Lycaenid was previously known only from a handful of specimens collected in the Atewa Range and the Bunso Arboretum, Ghana. All of them are males and were collected at artificial light. The first Liberian specimen is a male, also collected at moth light at Coldwater.

Abantis taigola Collins & Larsen, 2005

This extremely rare skipper species was believed to be endemic to the Ghana sub-region of West Africa before the first Liberian record from Mt. Beeton. Surprisingly it was also recorded in the ENNR during the present survey.

Fresna maesseni Miller, 1971

The species is among the rarest butterflies in West Africa and could be found only in good quality forest. The specimens found on the top of Mt. Beeton are the second and third from Liberia, its occurrence is a great range extension to the west.

3.2 Conservation value of the sampled areas-habitats

Although neither the time, nor the efficiency of sampling could be standardised, recorded species richness from each locality is usually a good indicator of conservation value of an area. Along with the presence or absence of butterfly species of conservation concern, the recorded number of species is also presented below for each locality. Tables 1-4. summarise the recorded species in the impact and mitigation areas, also in the ENNR and other surveyed localities, including those surveyed in 2012.

Impact area									
Yuelliton 59									

Table 1. Recorded species richness in Phase 2 impact area – based on the 2012 surveys (Sáfián & Larsen 2012) and Boireau (2009).

3.2.1 *ENNR*

Airtel road and hilltops

The upland forests around Airtel road and sub-montane forests on higher slopes and mountain tops are top priority conservation areas. They do not just host an extremely high diversity of butterflies, but several species new to science or endemic to the Nimba Mountains have been also recorded from the area, including *Aslauga larseni*, *Aphnaeus nimbaensis*, *Pilodeudorix* sp. 1. *Uranothauma belcastroi*, *Hypolimnas aubergeri*, *Euriphene lomaensis*. Ecologically speaking, the hilltops in the area are also very important because they serve as mating localities of the IUCN red-listed *Papilio antimachus*, which can commonly be observed displaying, occasionally also courting on these grassy or partially forested hilltops. During the 2013-14 survey 324 butterfly species were recorded from the upland and sub-montane region of ENNR.

Blue Lake road

The forests around Blue Lake road are in rather good condition and host a diverse butterfly community. Only a single priority species was captured here: *Uranothauma belcastroi*, which was also found near the radio masts at higher elevation. During the 2013-14 survey 149 butterfly species were recorded, mostly from the upland forests along the Blue Lake road.

ENNR								
ENNR Radio Masts	Coldwater	Blue Lake Road	Grassfield	Secondary forest	ENNR total			
324	357	149	70	65	480			

Table 2. Recorded species richness in the ENNR during the 2013-14 surveys.

Coldwater

Coldwater is among the few localities in the ENNR, where lowland forest in good condition still occurs. Many lowland forest specialists were found exclusively in the area, including two undescribed species: *Stempfferia* cf. *zelza*, *Andronymus* cf. *fenestrella*. Other species of conservation concern have been also recorded from Coldwater, such as the Nimba endemic *Hypolimnas aubergeri*, and the Liberian sub-region endemic *Euriphene taigola* and *E. leonis*. Coldwater also serves as an important corridor area between the upland forests of Mt. Bele (Blei) and Mt. Nimba range. During the 2013-14 survey 357 butterfly species were recorded in the lowland forests of Coldwater, which is the highest recorded species richness in the Nimba Mountains.

Grassfield

Grassfield, with its secondary grassland and the surrounding degraded forest has low priority for conservation. Although a few butterflies inhabiting grasslands might be special to this area regionally, to a wider context it is very improbable that unique species or species

of conservation concern would be found in the area. However, under protection, the secondary forest patches between the boundary line of the ENNR and the Yekepa-Sanniquellie road could serve a green corridor between ENNR and the Western Range, which would be important for the dispersal of species or to secure continuous gene flow between populations. During the 2013-14 survey 70 species were recorded in two brief visits in Grassfield.

Secondary forest and farmland

Originally, the valley probably hosted a unique wet forest along the creek, which could have been home for many larger skipper species (*Katreus*, *Caenides*, *Leona*), which are largely missing from the Nimba samples. Unfortunately, it is degraded to the level where due to previous clearings and recent illegal farming activities, the deep forest fauna has disappeared. With efficient protection, the forest will probably be able to regenerate to the stage that these deep forest species could recolonize the area from existing patches of suitable habitats. During the 2013-14 survey 65 species were recorded in two brief visits in the secondary forest and farmland below the lookout point.

3.2.2 Community Forests

Gba Community Forest - Mt. Beeton

Mt. Beeton was referred to as a very important butterfly habitat in the previous report by Sáfián & Larsen (2012). The authors emphasise the importance of the hilltop area due to the extremely high diversity and density of butterflies, including the highest observed number of the IUCN red-listed *Papilio antimachus*. The present survey confirmed the importance of the mountain, during the two surveys (wet season and dry season), two species new to science: *Cephetola wingae*, *Stempfferia katikae*, and permanent colonies of the Nimba endemic *Aphnaeus nimbaensis* were recorded. Surprisingly, the Nimba endemic *Euphaedra aubergeri* was also found on Mt. Beeton for the first time in Liberia, as well as *Geritola subargentea continua*, which was highlighted by Boireau as second record to West Africa and *Iridana hypocala*, a species of biogeographic interest. *P. antimachus* has been also repeatedly observed on the top of Mt. Beeton. During the surveys in 2012 and 2013 284 butterfly species were recorded.

	Mitigation area (Gba Community Forest)							
Bentor Camp	entor Camp Vanyampa Camp Mount Beeton Bonlah Gba CF							
159	239	284	63	410				

Table 3. Recorded species richness in Gba Community Forest during the 2013 – 14 surveys.

Blei Community Forest - Mt. Bele

Mt Bele (basically equivalent to Blei CF) is the southernmost summit of the Nimba Mountains separated from the main mountain range by the Grassfield – Zortapa road. The mountain constitutes a horseshoe-shaped narrow ridgeline and the depression in the middle is covered entirely by good quality forest. The summit and the higher sub-summits reach over 900 metres, covered by unique upland rainforest (many patches are probably primary), while others were previously logged, or damaged by storms and landslides. The new *Cephetola* species, first found on Mt. Beeton was also recorded on the summit of Mt. Bele, as well as *Pilodeudorix* sp. 2 and *Pilodeudorix* 3, both undescribed. *Papilio antimachus* and *Euriphene Iomaensis* were also observed on the summit of Mt. Bele. During the 2013-14 survey 226 butterfly species were recorded from the upland forests of Mt. Bele.

Zor Community Forest (Dulay)

The community forest is one of the most intact lowland forests in the Nimba area, it is contiguous with the ENNR in the north-west. The majority of the area is covered by mature secondary forest, which was logged during the civil conflict, but according to local guides even primary patches are found further away from the old logging roads. During a single brief visit in the dry season in 2013 an undescribed species, *Mesoxantha* sp. was found here among the 104 butterfly species recorded.

3.2.3 Other sites

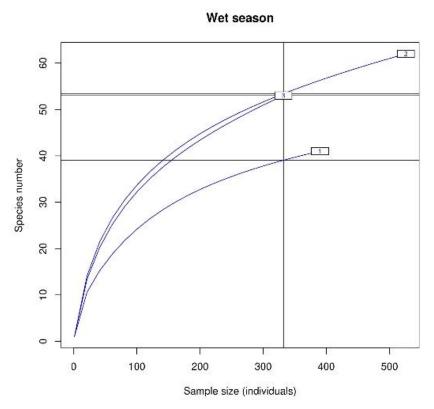
Yekepa residential area and Club House hill

As part of the biodiversity survey, we intended to sample all available habitat types, and therefore the parklands, the secondary grasslands and the disturbed fallow vegetation of Yekepa and along the road leading to the Club House were also sampled, including a small patch of young secondary growth woodlands at the pump house. It is not surprising that the conservation value of the area and the sampled habitats proved low, however a few interesting butterflies were recorded from the area, including the majority of savannah species recorded during the surveys. The two *Lepidochrysops*: *L. parsimon* and *L. synchrematiza* were found exclusively in the grasslands of the residential area.

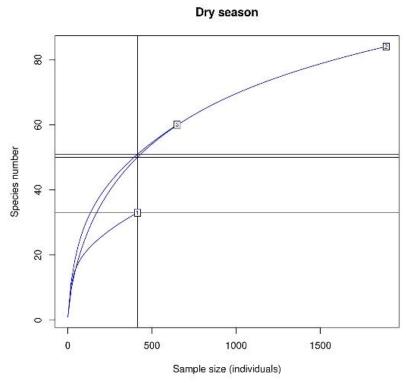
Yekepa and Blei and Zor Community Forests										
Mount Bele	Dulav	Club House Hill	Yekepa Residential Area							
226	104	37	49							

Table 4. Recorded species richness in Yekepa and Blei and Zor Community Forests during the 2013 – 2014 survey.

3.3 Butterfly monitoring (Szabolcs Sáfián & Ádám Kőrösi)


The butterfly monitoring using fruit-baited traps has been successfully tested during two sampling periods (one in the dry season and one in the wet season) in 2013-2014. The test sampling proved that trapping of fruit-feeding butterflies along transects could collect a representative sample to predict species richness (of fruit-feeding butterflies) and find differences between butterfly communities along elevation gradients in the Nimba Mountains. Seasonality between species communities in all elevation zones could also be detected. From the present results we can predict that long term monitoring of the fruit-feeding butterfly communities could provide important information on changes in the butterfly communities caused by seasonality, climate change or even other ecological factors and could therefore be used as a tool of measuring the success of the protection or conservation management of the ENNR.

3.3.1 Species richness and diversity


During the one month field study (two weeks in rainy or wet season and two weeks in dry season), 4203 specimens belonging to 116 species of fruit-feeding butterflies were recorded: 1248 specimens, belonging to 89 species in rainy season and 2955 specimens belonging to 100 in dry season. They represent approximately 15% of all butterflies positively recorded in Liberia and 19% of all species found in the Nimba Mountains (Liberia). Comparison of observed species richness of fruit-feeding butterflies shows that lowland forests are by far the richest habitats (62 in rainy season and 84 in dry season), followed by the mid-elevation forests by little difference between the two seasons (53 in rainy season, 60 in the dry season). The observed species richness is significantly lower in the sub-montane zone compared to the other zones, regardless to season (41 in the rainy season, 33 in the dry season).

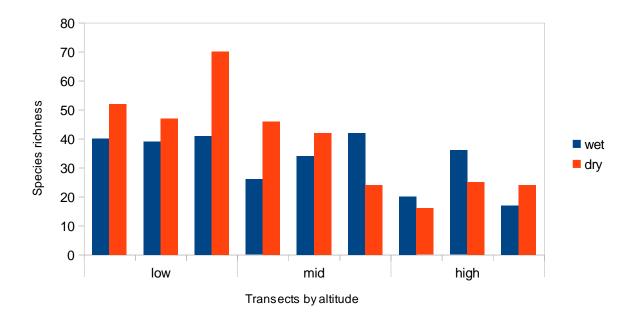
Seasonally, species richness was significantly higher in all lowland forest transects in the dry season, the samples were more even at mid-elevation and in the sub-montane zone. In some transects even higher species richness was detected in the rainy season (Table 5). The rarefaction curves indicate lower species richness in the sub-montane zone in both seasons, however they predict little differences between mid-elevation and lowland forests. The species richness estimation shown large variation, however Chao 1 and Chao 2 had rather high error compared to ACE, Jackknife1 and bootstrap methods and the latter are therefore should be more accurate estimates (Table 5).

Figure7. Rarefaction curve estimating total species richness in wet season. 1. submontane forest, 2. mid – eleveation forest, 3. lowland forest

Figure 8. Rarefaction curve estimating total species richness in dry season. 1. sub-montane forest, 2. midelevation forest, 3. lowland forest.

Species accumulation graphs indicate sufficient sampling (showing observed species richness, shown also on Table 5 and Fig. 9) and test the sufficiency of sampling in both seasons. The steepness of the graphs indicates that the sampling effort was sufficient to record the majority of species present in the sub-montane zone in both seasons. However, additional sampling will reveal further species according to the graphs showing low elevation and mid-elevation samples, especially in the rainy season. This is also well reflected in the abundance records (Fig. 14), as species accumulation is much lower where the general abundance of butterflies is low. In the dry season, species accumulation graphs flattened significantly in the mid-elevation samples, indicating sufficient sampling effort.

Season	Altitude	Transect ID	Chaol	Chao2	ACE	Jacknifel	bootstrap	observed
		7	64.8 (16.2)	63.4 (19.3)	67.8 (4.7)	57.8 (5)	47.1 (2.7)	39
	low	8	45.1 (5.9)	43.6 (5.9)	45.1 (3.1)	47.9 (3.7)	42.9 (2.3)	38
		9	59.6 (14.4)	55.2 (14.4)	53 (3.5)	53.9 (4)	46 (2.2)	40
		1	error	55.3 (44)	50.65 (4.75)	39.86 (4.09)	30.84 (2.07)	25
Wet	mid	2	61.1 (20.9)	54 (20.9)	52.9 (3.9)	47.9 (4.1)	39.3 (2.2)	33
ī		3	53 (7.6)	52.3 (8.3)	63.1 (5.3)	57.8 (4.5)	49 (2.7)	41
	high	4	29.7 (10.3)	26 (10.3)	29.2 (3.1)	26.9 (3.1)	22.5 (1.7)	19
		5	42.2 (5.5)	42.3 (6.8)	48.5 (3.7)	46.9 (3.7)	41 (2.2)	35
		6	20.2 (4.9)	18.5 (4.9)	20.4 (2.1)	21 (2.2)	18.3 (1.3)	16
		7	60.5 (5.6)	60 (6)	64.1 (3.8)	67.9 (5.4)	60.2 (3)	52
	low	8	73.9 (15.5)	70.1 (15.5)	72.5 (4.3)	68.8 (5.4)	56.6 (2.8)	47
		9	103.8 (18)	102.5 (20.3)	99.6 (5.2)	95.8 (5.8)	81.3 (3.3)	70
		1	55.8 (6.8)	54.3 (6.8)	59.6 (3.8)	59.9 (3.7)	52.7 (2.2)	46
Dry	mid	2	102.2 (45)	99 (76.7)	65.5 (4)	60.8 (4.6)	49.6 (2.3)	42
		3	52.2 (23.2)	43.5 (23.2)	48.2 (3.9)	36.9 (3.6)	29.3 (2)	24
		4	22.3 (7.6)	19.3 (7.6)	20.2 (2.2)	21 (2.2)	18.2 (1.3)	16
	high	5	43 (14.4)	32.5 (8.4)	39.8 (3.8)	36.9 (3.4)	30.1 (1.9)	25
		6	44.3 (20.2)	36 (20.2)	36.7 (3.3)	32.9 (3)	27.7 (1.5)	24


Table 5. Observed and estimated species richness in the different elevation zones.

Species accumulation graphs indicate sufficient sampling (showing observed species richness, shown also on Figs. 10-11.) and test the sufficiency of sampling in both seasons. The steepness of the graphs indicates that the sampling effort was sufficient to record the majority of species present in the sub-montane (high) zone in both seasons. However, additional sampling will reveal further species according to the graphs showing low elevation and mid-elevation samples, especially in the rainy season. This is also well reflected in the abundance records (Fig. 14), as species accumulation is much lower where the general abundance of butterflies is low. In the dry season, species accumulation graphs flattened significantly in the mid-elevation samples, indicating sufficient sampling effort.

Shannon diversity values indicate similarly high diversity in the lowland and mid-elevation (upland) wet season samples, and only slightly lower diversity in the sub-montane zone

(Table 6). However, mid-elevation forests seem to be more diverse in the dry season, compared to the lowland and sub-montane zones.. Fisher Alpha and Simpson indices show different patterns (Table 7). The Simpson index shows a pattern similar to that of Shannon diversity in the dry season sample, but the sub-montane zone has only slightly lower diversity than the mid-elevation zone (Tables 6-7). Fisher Alpha diversity indicates a continuous decrease of diversity along the elevation gradient from lowland forests towards the sub-montane zone (Table 7). The samples show rather equal evenness in the wet season samples, being more heterogene in the dry season, where lowland forest sample shows the lowest evenness values (Table 7), in correspondence to the rather numerous species with high abundance.

Figure 9. Species richness in samples from the three altitudinal zones in the ENNR. Including both rainy and dry season.

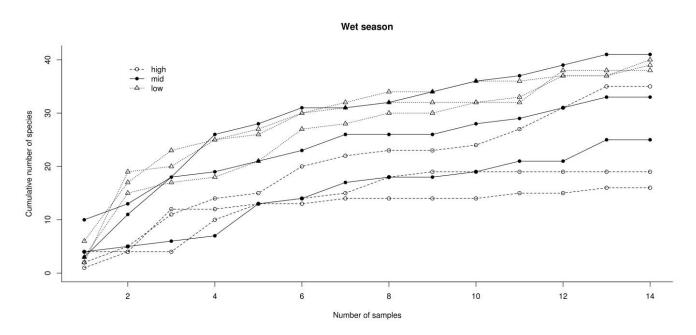


Figure 10. Species accumulation in each transect in the wet season.

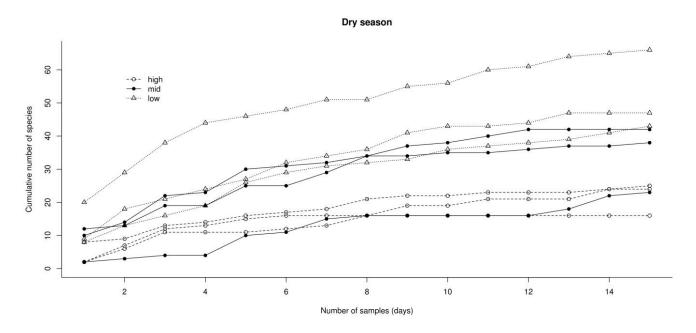


Figure 11. Species accumulation in each transects in the dry season.

		Transect	Species	richness	Abuno	lance	Shan	inon
Season	Altitude	ID	Per transect	Per altitude	Per transect	Per altitude	Per transect	Per altitude
		7	39		127		3,17	
	lowland	8	38	62	200	526	3,13	3,39
		9	40		199		3,22	t Per altitude
		1	25		66		2,83	
wet	upland	2	33	53	125	332	3,03	3,23
		3	41		141		3,19	
	sub-montane	4	19	41	70	390	2,40	2,73
		5	35		159		2,84	
		6	16		161		2,13	
		7	52		561	_	2,29	
	lowland	8	47	84	422	1891	2,16	3,39 3,23 2,73 2,59 3,02
		9	70		908		2,79	
		1	46		279		3,05	
dry	upland	2	42	60	300	650	2,80	3,02
		3	24		71		2,74	
		4	16		99		2,32	
	sub-montane	5	25	33	116	414	2,58	2,72
		6	24		199		2,52	

Table 6. Species richness, abundance and Shannon diversity index of fruit-feeding butterflies in three elevational zones in the Nimba Mountains, Liberia.

		Transect	Simp	son	Fisher'	s alpha	Pielou's	evenness
Season	Altitude	ID	Per transect	Per altitude	Per transect	Per altitude	Per transect	Per altitude
		7	0,936		19,22	_	0,865	0,823
	lowland	8	0,937	0,947	13,90	18,27	0,862	
		9	0,945		15,08		0,872	
		1	0,919		14,66	_	0,880	
wet	upland	2	0,932	0,937	14,63	17,79	0,865	0,820
		3	0,937		19,42		0,858	
	sub-montane	4	0,856		8,58	11,56	0,815	0,738
		5	0,895	0,893	13,88		0,799	
		6	0,850		4,42		0,767	
		7	0,750	_	13,99	18,01	0,579	0,584
	lowland	8	0,734	0,818	13,54		0,562	
		9	0,873		17,69		0,657	
		1	0,912		15,68		0,797	
dry	upland	2	0,893	0,907	13,29	16,12	0,750	0,738
		3	0,910		12,75		0,861	0,820 - 0,738 - 0,584
		4	0,870		5,40	_	0,837	0,777
	sub-montane	5	0,887	0,906	9,79	8,43	0,801	
		6	0,889		7,14		0,794	

Table 7. Simpson, Fisher Alpha diversity indices' and Pielou's evenness index of fruit-feeding butterflies in three elevational zones in the Nimba Mountains, Liberia.

Rényi's diversity ordering, using a wide family of diversity indices, found also an evenly decreasing diversity from lowland to sub-montane zone in the dry season, but the diversity in the dry season proved incomparable due to uneven diversity distribution (Figs. 12-13).

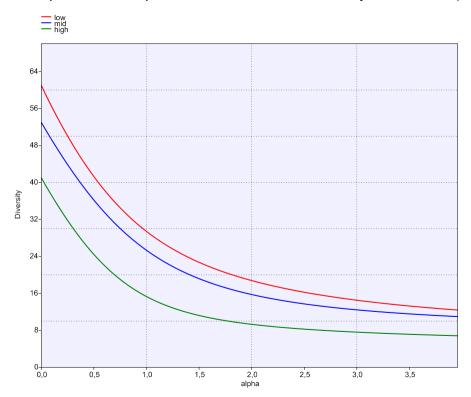


Figure 12. Rényi diversity ordering show clearly comparable profiles in the rainy season.

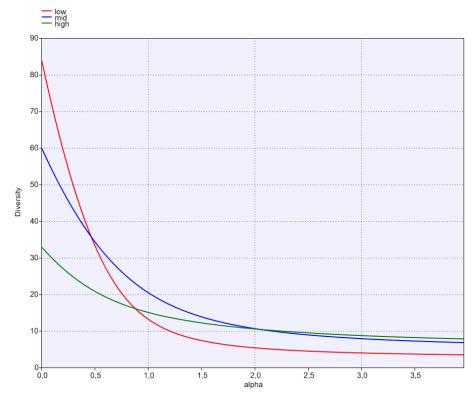
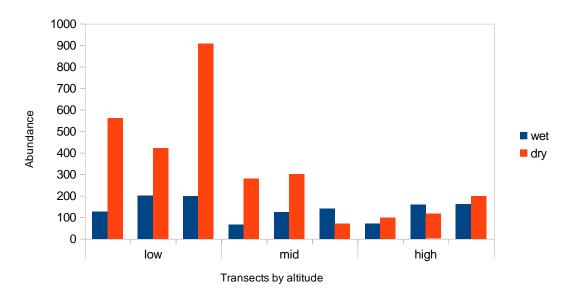



Figure 13. The dry season diversity profiles are not comparable by Rényi diversity ordering.

3.3.2 Abundance

The abundance profiles show very different patterns in wet and dry season in the lowland and mid-elevation forests. The wet season samples are much more even with generally lower abundance of species and no species in the sample proved exceptionally abundant. In both samples, even the most abundant species remained below 100 specimens per sample. In the dry season, some butterfly species became extremely abundant in the lowland forest sample, e.g. Bicyclus funebris dominated practically the entire sample with over 900 specimens. A couple of other co-dominant species also reached over a hundred specimens in the sample (see species abundance data below, also in Appendix II). The pattern is similar but less extreme in the mid-elevation sample, as the abundance of the dominant species does not reach 150 specimens, while another co-dominant species reaches only near 100 (Appendix II). In the sub-montane zone, no real dominance of any butterfly species could be detected, as the samples remained of low-abundance even during the dry season (Appendix II) The very high proportion of singletons (rare species) should also be mentioned, as this was common in practically all samples (over 30% in all, but two samples, where it was just below 30%), including those of sub-montane forests, although the proportion of singletons in lowland and mid-elevation forests proved higher in the rainy season, while it was opposite in the sub-montane zone. A few factors causing high proportion of singletons were identified. Species that do not belong to the family Nymphalidae are not normally attracted by fermenting fruit, however, in the dry season some could be captured in fruit-baited traps.

Figure 14. Abundance values in samples from the three altitudinal zones in the ENNR. Including both rainy and dry season.

Non Nymphalidae specimens caught in the fruit-baited traps were probably seeking moisture, as is the case for *Mylothris poppea* or *Acraea peneleos*. *Ypthima impura* is essentially savannah-dwelling species, inhabiting the sub-montane secondary grasslands of the Nimba

Mountains, but a single specimen found its way into the forest undergrowth seeking food. Probably the same applied to various strong flying *Charaxes* species, which inhabit the canopy and sub-canopy level of rainforests, but which are fond of fermented fruit and descend from the canopy readily in gaps of more open woodlands. The occasional presence of single specimens of *Charaxes* in basically all samples is obviously caused by random migration between micro habitats towards available food source.

A unique property of the samples is that practically all but one species with high abundance belong to the sub-family Satyrinae of Nymphalidae, with the majority of them belonging to the genus *Bicyclus* with the following cumulative abundance values: *Bicyclus funebris*: 943, *Bicyclus vulgaris*: 378, *Melanitis leda*: 250, *Heteropsis decira*: 245, *Bicyclus zinebi*: 179, *Gnophodes betsimena*: 174, *Bicyclus procora*: 169, *Bicyclus mandanes*: 167, *Bicyclus sangmelinae*: 156, *Bicyclus madetes*: 146 and *Bicyclus martius*: 115. *Kallimoides rumia* is the only non-Satyrine species with an abundance value above 100 (104). Some species of extreme abundance also show strong seasonality, as *Bicyclus funebris*, *Bicylus mandanes*, *Melanitis leda* and *Gnophodes betsimena* have not even recorded during the wet season sampling (Appendix II).

High, but not outstanding is the proportion and general abundance of species belonging to the genus *Charaxes*, especially in the dry season samples. Although the majority of these highly mobile and strong flying species are essentially canopy and sub-canopy dwellers, they are fond of fermented fruit, and could they could occasionally appear even in the understorey seeking food. This also depends on the seasons, as abundance of *Charaxes* are significantly higher in the dry season, when food-source is limited, especially in the higher elevation zones. The stratification of the habitat can also affect attraction of *Charaxes*, as the forest has only a single, semi open high canopy in the sub-montane zone, with lower than average height of trees (25-35 m), and the bait could be more easily detected by *Charaxes* flying in the canopy, compared to the multi-layered canopy lowland forests, where the emergent trees could easily reach 50-60 m height and the bait remain undetectable for high-flying *Charaxes*.

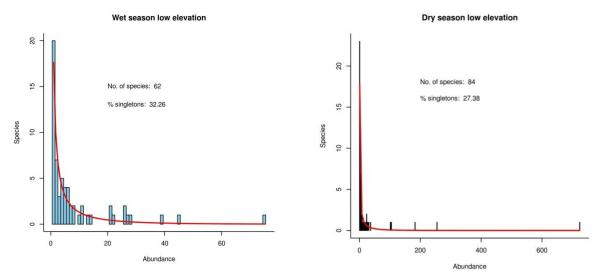
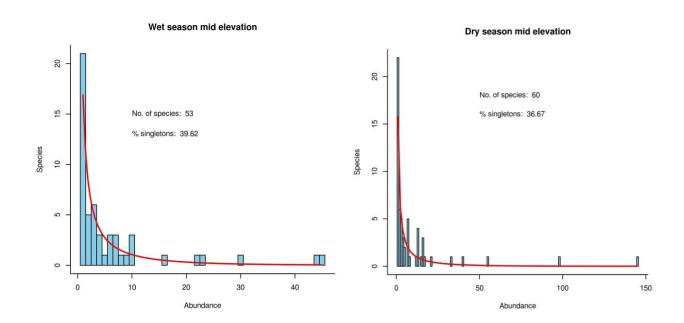
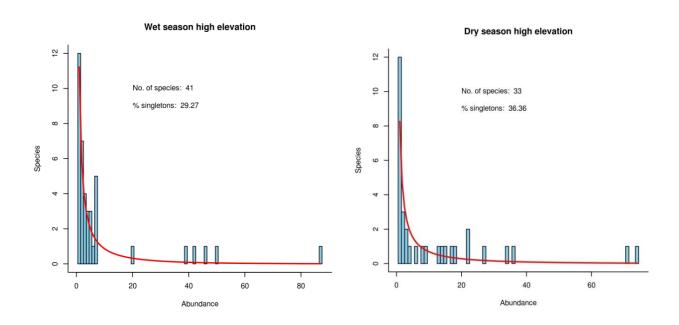




Figure 15. Abundance profiles in the lowland forest samples in both wet (left) and dry (right) seasons with the number of observed species richness and the proportion of singletons.

Figure 16. Abundance profiles in the mid-elevation forest samples in both wet (left) and dry (right) seasons with the number of observed species richness and the proportion of singletons.

Figure 17. Abundance profiles in the sub-montane forest samples in both wet (left) and dry (right) seasons with the number of observed species richness and the proportion of singletons.

3.3.3 Seasonal and elevational patterns

As already mentioned, seasonality could be recognised in fruit-feeding butterfly communities, although it would not be possible to draw a general pattern, as seasonality is often more specific, appearing in small differences in the examined parameters. For

example, the abundance of butterflies in lowland forests is significantly higher in each transect in the dry season, although it is more controversial in the mid-elevation as more butterflies were captured in two transects during the dry season, but the abundance was lower in the third transect. In the sub-montane samples, no significant difference in abundance could be detected between rainy season and dry season samples, possible regulated by the weather as cloudy weather is very common, and occasionally rain can also occur even during the dry season above 1100 metres in the Nimba Mountains. Specific seasonal and elevational pattern was revealed using redundance analysis (RDA) in a few commoner species, where the abundance were high enough to be interpreted by the model, as singletons, doubletons and rare species with only a few records could not be included in the RDA (Table 8). Several butterflies were found associated with lowland forests, especially in the dry season, including some of the most abundant Bicyclus species. Also, the most abundant Euphaedra seems also to be concentrated in the lowland forests, especially in the wet season. Both Gnophodes, G. betsimena and G. chelys show preference to lowland forests but in different seasons. Interestingly, only two butterflies were found in association with sub-montane forests: Charaxes pollux and Heteropsis decira, but only in the wet season. No elevational preference was found in the relatively common Melanitis libya, Bicyclus sangmelinae and Bebearia arcadius using RDA.

		1	Elevational pattern	
		no	high	low
	no			Euphaedra phaetusa, Kallimoides rumia
Seasonal pattern	dry	Melanitis libya		Bicyclus auricruda, Bicyclus funebris, Bicyclus mandanes, Bicyclus vulgaris, Euriphene gambiae, Melanitis leda, Gnophodes betsimena
	wet	Bebearia arcadius, Bicyclus sangmelinae	Charaxes pollux, Heteropsis decira	Bicyclus taenias, Bicyclus zinebi, Euphaedra ceres, Gnophodes chelys

Table 8. Elevational and seasonal pattern of fruit-feeding butterflies.

Seasonality pattern could also be recognised through habitat similarity, as the cluster analysis based on Jaccard similarity index indicates higher differences between seasonal pattern than between elevation zones in the lowland and mid-elevation forests (Fig. 18). In the sub-montane zone the samples in the dry and wet season are quite similar. The reasons for this are likely to be the mitigation effect of the frequent cloud cover and the consequent permanent humidity also in the dry season in the sub-montane zone, but also that the Jaccard index does not calculate with abundance, only with species identity.

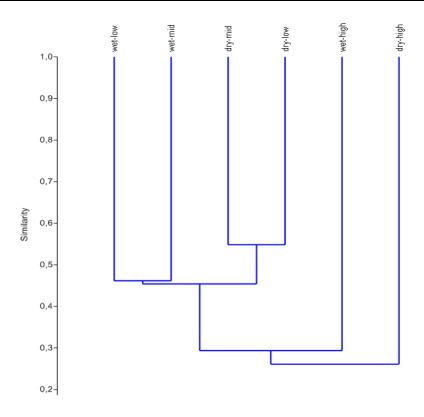


Figure 18. Cluster analysis based on Jaccard similarity index, which uses only species identity but excludes abundance.

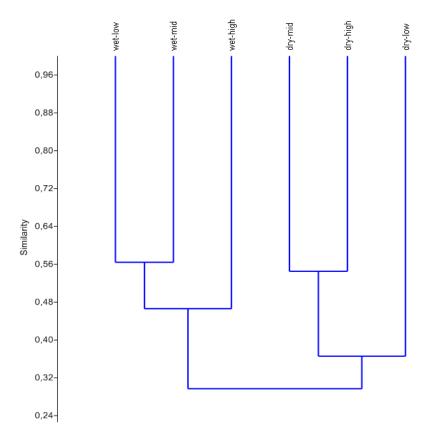


Figure 19. Cluster analysis based on Bray-Curtis distance index, which considers both species identity and abundance.

Western Range Iron Ore Project, Liberia Biodiversity Conservation Programme, 2011-2015 Butterflies of the Nimba mountains, Liberia: Report on the butterfly surveys 2013-2014 for Arcelormittal Liberia

When the data was analysed by Bray-Curtis similarity index, which considers also abundance, we receive much less controversial results (Fig. 19). The analysis shows clear seasonality between the two seasons in all elevation zones with variable distance between each elevation zones in the two seasons.

3.3.4 Hilltop Survey

The hilltop survey designed to last for four consecutive days in each selected area on Mt. Bele was unfortunately cancelled due to unexpected cloudy weather on the last week of December 2013 and the first week of January 2014, as butterfly activity ceased completely on the hilltops. Still, during the two full field days, 238 behavioural records were collected involving 20 and 23 butterfly species from the two hilltops, respectively. All species belong to the tribe Adoliadini (Nymphalidae: Limenitinae) and none were recorded as expressing hill-topping behaviour. It is hoped that the hilltop survey could later be completed, as it would be the first documented proof of high ecological and conservation importance of hilltops in rainforests, which should be considered in following best practice of mining and/or logging activities in hilly or mountainous areas. The full list of Adoliadini recorded during the hilltop survey and their temporal and spatial pattern is presented in Appendix III.

4. SUMMARY AND CONCLUSIONS

A series of butterfly surveys uncovered the diversity of ENNR and the surrounding areas, including three community forests (Gba CF, Blei CF and Zor CF). The checklist of butterflies now contains a total of 610 species, which is 77% of all butterflies ever recorded from Liberia. Among many new country records and other rare species, 9 were found as new to science (Aslauga larseni. Cephetola wingae, Stempfferia katikae., Stempfferia sp.2. Pilodeudorix sp.n. 1, Pilodeudorix sp.n. 2, Pilodeudorix sp.n. 3, Mesoxantha sp.n., Andronymus cf. fenestrella) Some of these are probably upland or sub-montane specialists and could prove restricted to the Nimba Mountains or the Guinea Highlands. Papilio antimachus, which probably has the strongest West African population in the Nimba Mountains is listed as Data Deficient (DD) on IUCN's redlist. These results support the conservation importance not only the ENNR but the entire Nimba area, which host an extreme diversity of butterflies, also a good number of species of conservation concern (including endemics and restricted range species). The majority of these species were recorded inside the ENNR and/or in the surrounding CFs, but Aphnaeus mirabilis and lolaus cf. parasilanus are known only from the TMF area (Gbapa).

The test butterfly monitoring recorded 116 butterfly species in fruit-baited traps. This is approximately 80% of the estimated richness of fruit-feeding butterflies. The two times two weeks sampling test protocol collected relevant data, which proved sufficient to compare species richness, diversity, abundance and even to identify seasonal and elevation pattern of the fruit-feeding butterfly communities. Based on these results, the monitoring protocol could be used on a long term to detect changes in fruit-feeding butterfly communities, which could be indicators for various ecological factors including habitat disturbance or regeneration, climate change etc.

Unfortunately the hilltop surveys could not reveal sufficient information about the ecology of hill-topping species, due to unexpected unfavourable weather in the dry season. Still, it recorded over 20 species of Adoliadini, none of them were previously documented as hill-toppers. This strengthen the theory of importance of hilltops in invertebrate conservation in rainforests, as many species, especially butterflies use hilltop for mate location.

5. **RECOMMENDATIONS**

As AML Liberia is among the main stakeholders in the Nimba area, it is also their responsibility to support the effective protection of the natural habitats in the ENNR and the CFs. To help AML's work in implementing its Biodiversity Conservation Program (including the offset program for Phase 2 mining activities) with special focus on the butterfly fauna, the following recommendations are given.

Despite the fact that the forests of Nimba belong to various administrational units (e.g. ENNR, CFs) for conservation and planning and protection, these areas should be considered as a single ecological unit, and thus should be managed and financed together. It is also very important that the lowland forests that surround the Nimba Massif are also of very high conservation concern as they host high butterfly richness.

5.1 Specific recommendations

More effective protection of ENNR

During the butterfly surveys continuous illegal activities were encountered in the ENNR. Some people were collecting only scrap metal but illegal farming was also observed, and wood collectors and armed poachers were permanently present in the ENNR. To reduce human activities in the ENNR it is recommended to build posts on the two main access roads with barriers and preferably with permanent presence of forest rangers and security guards. This way the commercialisation of poaching and wood collecting could be ceased with immediate effect, as vehicles will not be able to enter ENNR uncontrolled. These posts should be managed by the ENNR Co-Management Committee and could be co-financed by AML, FDA and the telecommunication companies, which have permanent station on various summits inside ENNR. Beyond the two posts, permanent forest guards should be assigned to patrol the areas near Yekepa, and Gbapa, as many illegal farmers and poachers come from these highly populated towns and with control of the activities the majority of encroachment would cease almost immediately. The security guards of the telecommunication masts should also be regularly checked by forest guards, as on one occasion they were observed poaching with a shotgun inside the reserve. Even if they do not hunt regularly, they can occasionally use their shotgun to shoot at big birds of prey, just to entertain themselves. These security guards should be completely disarmed. Wild fires (or bush fires) are quite common in the grassland areas of the ENNR, especially during dry season. In drier years these fires can even penetrate forest areas, effecting important butterfly habitats. The burning of grassland also retrain forest regeneration. Some wild fires are actually caused by illegal farmers and therefore elimination of illegal farming activities would also lower the risk of habitat degradation caused by uncontrolled wild fires.

Establishment of green corridors to link up the protected habitats in the Nimba Mountains.

It is recommended that the various blocks of natural habitats should be kept connected by so-called green corridors, connecting corridors consist of natural habitats on non-protected land linking up protected areas. This applies particularly to areas, which are or will be affected by mining and/or construction activities. At present, the important habitats in the Gba CF (and generally in the Western Range) are not sufficiently connected to those in the ENNR resulting in isolation of butterfly populations. This isolation could prevent gene flow completely between the two areas, which could result in decrease of genetic variability and vitality of butterfly populations and on a long term this could also contribute to extinction of butterfly populations in the Nimba Area (despite protection of their actual habitats). These corridors should be established in a network of relatively narrow (cc. 200-500 m wide) forest belts stretching from Gba CF to ENNR. It is important that these corridors should be set aside from both construction and agricultural utilization.

Establishment of medicinal (ethno-botanical) plant collections or plantations

The lower slopes of Mt. Nimba were planted with an introduced and highly invasive tree species Gmelina arborea mostly to provide local people with timber and firewood. This plantation is rather useless, as the wood of this tree is soft for timber, not durable and it cannot therefore be used either for building construction or to produce charcoal. Part of these plantations could be converted into medicinal plant collections or plantation at a relatively low cost to assure that people could get controlled access to their traditional medicines (leaves, flowers, shoots, bark and roots) preventing illegal collection of these NTFPs from the ENNR. As the majority of these medicinal plants are actually native forest trees, bushes and climbers, this way, the area of natural forest habitats are also expanded, providing also a rather biodiverse buffer to the forests of ENNR. These medicinal plantation could be established at the mouth of Cellcom road (right across the railway bridge) and further down along the main road towards Liabala and Gbapa. They could be well marked and supplemented by information boards and could be used also for education purposes. It is recommended that all seeds and cuttings for propagation should be collected in the ENNR and the surrounding forest areas to use local genetic material with the help of local herbalists or herbalist families, who might also be trained as custodians of the plantations. These medicinal plantations could be proposed as to become sections of the green corridors that link up ENNR with the natural habitats of the Western Range.

Grassfield-Zortapa road and Coldwater

It was discussed that the presently impassable road between Grassfield and Zortapa will be cleared and reconstructed and the broken bridges will be re-built to allow traffic between the two towns. The survey at Coldwater revealed that the old road is not only densely overgrown by secondary forest but also that butterflies commonly use this as dispersal corridor, and the muddy road surface also serves as feeding spots for many species during

Western Range Iron Ore Project, Liberia Biodiversity Conservation Programme, 2011-2015 Butterflies of the Nimba mountains, Liberia: Report on the butterfly surveys 2013-2014 for Arcelormittal Liberia

the dry season. Basically, this road section is the only connection point between Mt. Bele and the Blei CF and the ENNR, and any construction work will significantly increase the isolation of the butterfly populations of Mt. Bele, which are presently interconnected to the Nimba Range through the lowland corridor of Coldwater. Coldwater is also important for amphibian conservation due to the diversity and number of threatened amphibian species recorded (Penner, 2010).

In addition, a rehabilitated road will allow numerous people to access to the protected forest to collect wood and NTFPs and transport them to towns illegally, also poachers will also be able to reach the forest boundaries much more easily, potentially increasing the rate of killing of wild animals. As recent studies shown that that the strongest population of Western Chimpanzee live on Mt. Bele, which is strongly connected to the families in the southern part of the ENNR (Sorrel Jones pers. comm.). The rehabilitation of the road could result in separation and isolation of these Chimpanzee families.

An alternative solution would be to establish a ranger station and ecological research and eco-tourism centre at Coldwater, which would allow continuous presence of forest rangers near the forest, and would provide livelihood to local people, who can work with the visiting researchers. In the long term, these facilities could also be used by tourists, who could easily spend a few days trekking to Mt. Bele and the Nimba Range or watching birds or butterflies around Coldwater. As the road from Zortapa to the station (but not further towards Gbapa) will be rehabilitated, farmers of Zortapa could also benefit with getting easier access to and faster transport of goods from their farms. The research station could be built on the degraded grassy area, which was cleared to store logs some 30 years ago. The station could be run by an NGO with support from AML's Biodiversity Conservation Programme (for eco-tourism activities see also below).

Mt. Beeton

Considering butterfly diversity and high number of species of conservation concern, Mt. Beeton should be regarded as a priority conservation area, worthy of strict protection. Although it is inside the Gba CF, its status is unclear as the mountain is also within AML concession area. Also, as observed during the surveys in 2012 and 2013 some local farmers do not respect the community forest status and the volume of clearing for illegal farms increased inside the reserve since the first visit. It is therefore recommended that AML should help strengthen the protection level of Mt. Beeton, including support to establish a legally protected area as a biodiversity reserve. AML should continue to work in close collaboration with the Gba CFMB, community leaders and Forestry Development Authority to help prevent illegal activities. Mt. Beeton could also be developed for ecotourism, centred on Bonlah community, as the mountain has a potential also for bird watching and has a viable chimpanzee population. The old logging tracks could be used by visiting tourists very easily and a forest camp could be developed at the old logging camp

(used recently by the researchers). The hilltop could host a lookout tower, with beautiful view to the lowlands and the Mt. Nimba Range.

5.2 Further research potentials

Butterfly monitoring program

Based on the results of pilot monitoring, it is recommended that the monitoring, using fruit-feeding butterflies should continue on a regular basis to evaluate changes in the butterfly composition, habitat disturbance or even certain aspects of climate change. The field sampling could be done using trained local assistants both from FDA and from local communities. The identification of the material and analysis could be done by the author of this report, provided that the material is couriered to Europe. This way, the monitoring would more cost-effective compared to using expatriate consultants even for field work. The recommended sampling period is 15 days (including setting of traps and emptying them in 14 consecutive days) in each season (dry and wet), and the monitoring could be repeated in each year.

Radio Tracking Program

A pilot radio tracking program has been extensively discussed, supporting effective protection of the strongest known West African population of the Giant African Swallowtail – *Papilio antimachus*. The discussions involved the proposed survey area, technique used and also costing. The season and weather are usually the main factors for timing of the pilot survey and the months April or November were found to be most suitable for capturing, equipping and tracking *P. antimachus*. Technical details and proposed budget will be sent submitted separately from this report.

Moth Diversity Program

The butterfly surveys in the Nimba Mountains resulted in an extraordinary diversity of butterflies, including several species previously unknown to science, distributed across habitats from lowland forests to sub-montane cloud-forests and grasslands. Their value to nature cannot even be estimated, as they are part of many natural processes including food-chain, pollination etc. It is also widely known that the majority of species in the order Lepidoptera actually belong to the largely nocturnal moths (Micro- and Macroheterocera), which are even much more under-recorded in West Africa and it is possible that the Nimba Mountains host approximately 10, 000 species of moth, which could be uncovered only during a series of extensive surveys carried out by an experienced team of field researchers, who will distribute the collected material to experts, allowing identification of species in their respective groups. It would be a unique chance for AML to establish an indepth moth diversity program, giving the opportunity to explore the Nimba Mountain's Lepidoptera diversity further. It could be done on a long-term basis, starting with a pilot expedition and discussed further, when the first results are presented and evaluated.

5.3 Other proposed programs

Butterfly poster - education

For educational purposes, a colour poster, illustrating the majority of the butterflies special to the Nimba Mountains could be designed and printed. Selected species of interest could be illustrated on full colour drawings, as high quality drawing are either easier to produce, even from set specimens, also, they are more familiar to children and youth (the two major target groups) than photographs. The illustrations could be supplemented by short description of the species, where they were found and why they are important to nature and the local communities. This poster could not only be screened at the community houses in and around the concession, but could be distributed to primary and secondary schools. It could be produced also in French (or produced bilingual), as these species have the same importance in Guinea and Ivory Coast in the communities fringing the Nimba Mountains. It could be even printed in high quality in lower quantities on digital printer or plotter, according to budget and demand. Illustrations and sample of description is found in Appendix I.

Butterfly (Lepidoptera) based eco-tourism

There is a growing interest in Lepidoptera in the developed world, especially in Britain and Europe. As the Nimba Mountains harbours extremely high Lepidoptera richness, it could also attract tourists, who are interested in seeing-studying Lepidoptera in the Nimbas. Various butterfly-related activities could be organised with the help of AML including guided butterfly-watching trips, volunteer programs or even academic student programs, when a group of university students could carry out short term research projects on Lepidoptera. These activities could involve people also from local communities, who could support these programs in various ways (forest rangers, guides, assistants etc.). Obviously, these sorts of activities require further development of infrastructure and capacity building, which could be supervised by a local NGO, who can also organise the activities.

Butterflies of the Nimba Mountains - annotated checklist and atlas

With the completion of the in-depth research on the butterfly fauna, the Liberian Nimba Mountains became one of the best surveyed areas in West Africa. The research collected a large amount of information worthy of publication in a form, which could be used for both scientific and educational purposes. With the help of GIS experts, good quality distribution maps could be produced to show occurrences of each species found in the Nimba Mountains, supplemented by a short description, and photographic illustration of each species could be included. A similar book on important plants of the Nimba area was already produced by Marshall & Hawthorne (2013) published by AML.

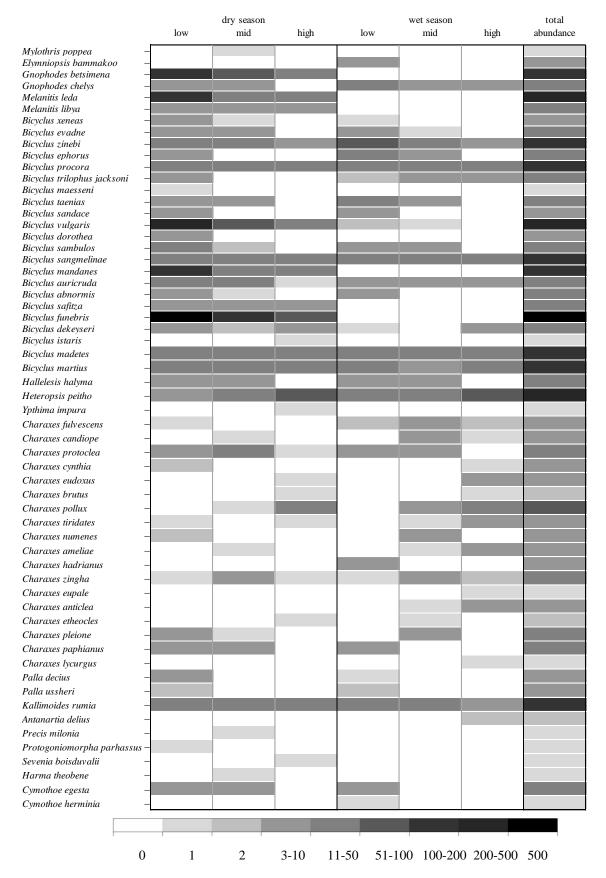
REFERENCES

- Boireau, P. (2009). Preliminary survey of lepidopterans of the Tokadeh and Gangra areas and the East Nimba Nature Reserve, Nimba Mountains, Liberia (manuscript). In.: Western Area Deposits, Environmental Studies BIOPA Studies. ArcelorMittal, Liberia and Afrique Nature 182-257.
- Condamin, M. & Roy, R. (1963). Le Réserve Naturelle Intégrale du Mt Nimba. Fasc. V. XIX. Lépidoptèra Papilionidae. *Mémoires de l'Institut Français d'Afrique Noire* (66): 415-422.
- Marshal, C.A.M. & Hawthorne W.D. (2013). *Important Plants of Northern Nimba County, Liberia: A Guide to Most Useful, Rare or Ecologically Important Species, with Mano Names and Uses.* ArcelorMittal, Liberia and Oxford Forestry Institute, UK. 460 pp.
- Larsen, T.B. (2005). Butterflies of West Africa. Apollo Books, Svendborg, 595 pp. + 135 colour plates.
- Libert, M. (2014). Sur la taxonomie du genre Celaenorrhinus Hübner en Africque (Lepidoptera, Hesperiidae). African Butterfly Research Institute, Nairobi. 272 pp. + 26 colour plates.
- Penner, J. (2010). Herpetological Survey of the ArcelorMittal Concession, Yekepa, Liberia (manuscript). URS Scott Wilson and ArcelorMittal Liberia, Liberia.
- Sáfián, Sz., Larsen, T.B. (2012). Butterflies in the Nimba Mountains (Nimba West) (manuscript). URS Scott Wilson and ArcelorMittal, Liberia. 85 pp.
- Sáfián, Sz. (2013a). Butterflies Across The River. Report on the rapid butterfly surveys for the 'Across The River Project' in Sierra Leone and Liberia in 2011 (manuscript). Across The River Programme, Birdlife International, Liberia. 59 pp.
- Sáfián, Sz. (2013b). Observation of hill-topping behaviour by the Giant African Swallowtail *Papilio antimachus* Drury, 1782 and other recent records from Liberia (West Africa) (Lepidoptera: Papilionidae). *Shilap Revista de Lepidopterología* 41(163):323-329.
- Sáfián, Sz., Libert, M. & Collins, S.C. (2013). Two new *Aphnaeus* (Lepidoptera: Lycaenidae: Theclinae) species from Liberia. *Zootaxa* 3718(2). http://dx.doi.org/10.11646/zootaxa.3718.2.7
- Sáfián, Sz. (2014). Hill-topping in some African *Celaenorrhinus* Hübner, 1819. *Metamorphosis* 25:1-2.
- Sáfián, Sz. (2015a): Two new Epitolini from Liberia in the genera *Stempfferia* Jackson, 1962 and *Cephetola* Libert, 1999 (Lepidoptera: Lycaenidae). *Metamorphosis*. 26:12-19.
- Sáfián, Sz. (2015b). Aslauga larseni (Lepidoptera: Lycaenidae: Miletinae), a unique new species from the Nimba Mountains, Liberia. *Metamorphosis* 26:27-30.

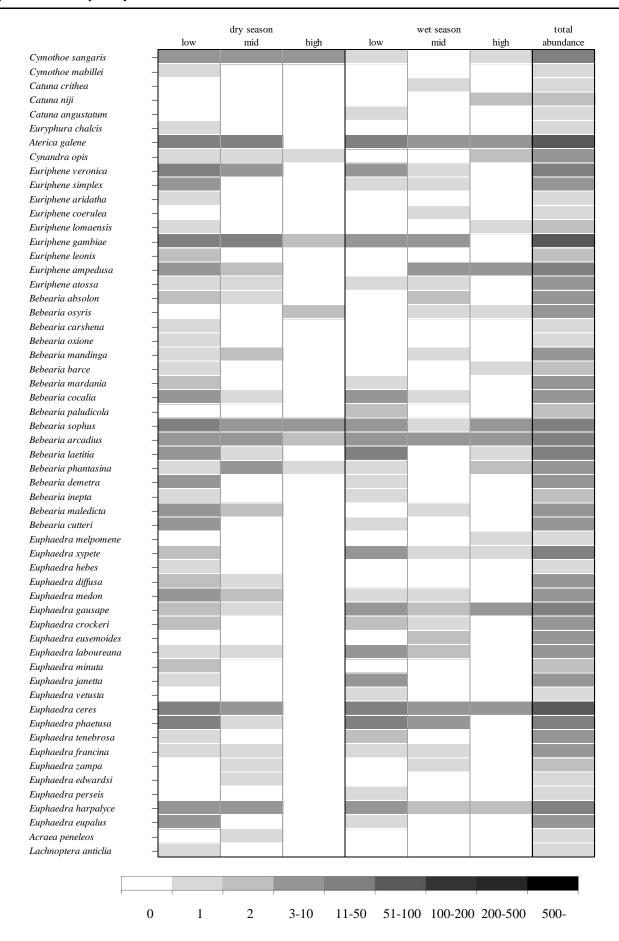
APPENDIX I. Sample illustrations and descriptions for the proposed educational poster.

The Beautiful Highflier (*Aphnaeus mirabilis*) is known only from the single specimen captured near Gbarpa (Western Range). It was found during a drought in the dry season, when many butterflies came to drink from muddy water near a swamp. The species, similarly to other Highfliers probably flies in the canopy of rainforest, and only very rarely descends to ground level. It might be endemic to the Nimba Mountains

The Loma Nymph (*Euriphene Iomaensis*) is a very rare butterfly, which could be found only in untouched primary forest in Liberia. The males usually visit hilltops, where they display their beautiful blue colour to attract the female, which is much less colourful, but it can hide from predators with sitting still on the dry leaves in the forest. This butterfly is fond of rotter fruit, and could be seen also under fruit-trees during fruiting season. It is very rare in the East Nimba Nature Reserve and Blei Community Forest.



The Giant African Swallowtail (*Papilio antimachus*) is the largest butterfly on the African continent. Still this butterfly is rarely seen, as they like to fly above the canopy of the high rainforest. Freshly hatched males sometimes appear at water, where they intake dissolved minerals from wet soil. Males also congregate on hilltops, flying around in big circles, waiting for the female. They chase away other males and often chase swifts and swallows, believing they are other butterflies. This species is endangered by deforestation in other African countries, still widespread in Liberia. The population in the East Nimba Nature Reserve and the surrounding community forests is probably the strongest in the country and in entire West Africa.


Illustrations by Szabolcs Kókay

APPENDIX II. Abundance values of the recorded species in fruit-baited traps in wet and dry season in the different elevation zones.

APPENDIX III. Adoliadini recorded during the hilltop survey on Mt. Bele. The species list is

in order of appearance.

in order of appearance.						
	species nr.	species	first appearence	last seen		
	1	Euphaedra laboureana	9,24	9,58		
	2	Bebearia osyris	10,11	11,17		
	3	Euphaedra gausape	10,25	11,43		
	4	Bebearia sophus	10,40	12,02		
	5	Euryphura chalcis	10,49	11,39		
	6	Bebearia barce	11,29	11,40		
	7	Bebearia demetra	11,40	12,24		
	8	Bebearia oxyone	11,39	13,10		
	9	Euriphene simplex	11,48			
Hilltop 1	10	Bebearia mandinga	12,02	15,06		
28.12.2013	11	Euriphene aridatha	12,41			
	12	Catuna oberthueri	12,41	13,14		
	13	Cynandra opis	12,51	cc 14.53		
	14	Euphaedra phaetusa	12,52	13.20		
	15	Bebearia arcadius	12,55	13,41		
	16	Aterica galene	13,14	14,44		
	17	Euriphene atossa	13,15	13,25		
	18	Euphaedra medon 14,05		15,12		
	19	Euphaedra hebes	14,05	14.50		
	20	Euriphene ampedusa	14,57	16.05		
	1	Euphaedra laboureana	8,55	9,29		
	2	Euphaedra gausape	9,22	11,04		
	3	Bebearia osyris	9,41	11,00		
	4	Euryphura chalcis	9,30	11,36		
	5	Bebearia phantasina	10,16	11,25		
	6	Bebearia sophus	10,30	12,30		
	7	Bebearia barce	10,38	11,42		
	8	Bebearia cutteri	10,46	11,25		
Hilltop 2 29.12.2013	9	Euphaedra eupalus	11,07	11,26		
20112.2010	10	Euriphene veronica	11,10	12,03		
	11	Bebearia demetra	11,18	11,51		
	12	Bebearia oxyone	11,29	12,55		
	13	Cynandra opis	12,00	15,15		
	14	Euphaedra phaetusa	11,32	12,46		
	15	Euriphene aridatha	12,07	13,25		
	16	Bebearia arcadius	12,20	13,19		
	17	Bebearia mandinga	12,36	12,55		

18	Aterica galene	12,52	15,00
19	Euphaedra tenebrosa	12,54	13,25
20	Euphaedra hebes	13,09	14,52
21	Euphaedra medon	13,40	15,18
22	Euphaedra gambie	14,51	15,15
23	Euphaedra ampedusa	14,52	15,38

APPENDIX IV. Checklist of the butterflies recorded in the Nimba Mountains 2012-2014

The numbers refer to the species ID in the book Butterflies of West Africa by Torben B. Larsen (Larsen 2005)

--- indicates species which were not known at the time of publication of Larsen (2005)

BIOPA shows records from 2008-2009 by Boireau

TOTAL shows records from Sáfián & Larsen (2012)

NIMBA TOTAL shows all species recorded from the Nimba Mountains (Liberia)

Superfamily PAPILIONOIDEA Latreille, 1802

Family PAPILIONIDAE Latreille, 1802

Subfamily Papilioninae Latreille, 1802

PAPILIO Linnaeus, 1758

1	P. antimachus	Drury, 1782	BIOPA	TOTAL	NIMBA TOTAL
2	P. zalmoxis	Hewitson, 1864			
4	P. dardanus	Brown, 1776	BIOPA	TOTAL	NIMBA TOTAL
5	P. phorcas	Cramer, 1775	BIOPA	TOTAL	NIMBA TOTAL
7	P. horribilis	Butler, 1874	BIOPA	TOTAL	NIMBA TOTAL
9	P. chrapkowskoides nurettini	Koçak, 1983	BIOPA	TOTAL	NIMBA TOTAL
10	P. sosia	Rothschild & Jordan, 1903			NIMBA TOTAL
11	P. nireus	Linnaeus, 1758	BIOPA	TOTAL	NIMBA TOTAL
12	P. menestheus	Drury, 1773	BIOPA	TOTAL	NIMBA TOTAL
13	P. demodocus	Esper, 1798	BIOPA	TOTAL	NIMBA TOTAL
15	P. cyproeofila	Butler, 1868	BIOPA	TOTAL	NIMBA TOTAL
16	P. zenobia	Fabricius, 1775		TOTAL	NIMBA TOTAL
17	P. nobicea	Suffert, 1904			
18	P. cynorta	Fabricius, 1793	BIOPA	TOTAL	NIMBA TOTAL
	GRAPHIUM Scopoli, 1777				
20	G. angolanus baronis	Ungemach, 1932			NIMBA TOTAL
22	G. tynderaeus	Fabricius, 1793	BIOPA	TOTAL	NIMBA TOTAL
23	G. latreillianus	Godart, 1819	BIOPA	TOTAL	NIMBA TOTAL
24	G. almansor				
25	G. adamastor	Boisduval, 1836			
26	G. agamedes	Westwood, 1842			
28	G. rileyi	Berger, 1950			

29	G. leonidas		Fabricius, 1793	BIOPA	TOTAL	NIMBA TOTAL
30	G. illyris		Hewitson, 1873			
31	G. policenes		Cramer, 1775	BIOPA	TOTAL	NIMBA TOTAL
32	G. liponesco		Suffert, 1904			
34	G. antheus		Cramer, 1779	BIOPA	TOTAL	NIMBA TOTAL
	Family PIERIDAE Sw	ainson, 1820				
	Subfamily Pseudopontin	inae Reuter, 1896				
	PSEUDOPONTIA Plöt	z, 1870				
35	P. gola		Felder & Felder, 1869			
	Subfamily Coliadinae S	Swainson, 1821				
	CATOPSILIA Hübner,	1819				
36	C. florella		Fabricius, 1775	BIOPA	TOTAL	NIMBA TOTAL
	EUREMA Hübner, 181	9				
38	E. senegalensis		Boisduval, 1836	BIOPA	TOTAL	NIMBA TOTAL
39	E. hecabe	solifera	Butler, 1875	BIOPA	TOTAL	NIMBA TOTAL
40	E. floricola	leonis	Butler, 1886	BIOPA	TOTAL	NIMBA TOTAL
41	E. hapale		Mabille, 1882			
42	E. desjardinsii	regularis	Butler, 1876			
43	E. brigitta		Stoll, 1780	BIOPA	TOTAL	NIMBA TOTAL
	Subfamily Pierinae Sw	ainson, 1820				
	Tribe Pierini Swainson	, 1820				
	PINACOPTERYX Wall	lengren, 1857				
44	P. eriphia	tritogenia	Klug, 1829			
	NEPHERONIA Butler,	1870				
45	N. argia		Fabricius, 1775	BIOPA	TOTAL	NIMBA TOTAL
46	N. thalassina		Boisduval, 1836	BIOPA	TOTAL	NIMBA TOTAL
47	N. pharis		Boisduval, 1836			NIMBA TOTAL
	COLOTIS Hübner, 181	9				
51	C. amata		Fabricius, 1775			
52	C. phisadia		Godart, 1819			
54	C. vesta	amelia	Lucas, 1852			
56	C. halimede		Klug, 1829			
57	C. celimene	sudanicus	Aurivillius, 1905			
58	C. ione		Godart, 1819			
60	C. danae	eupompe	Klug, 1829			
61	C. aurora	evarne	Klug, 1829			
62	C. antevippe		Boisduval, 1836			
63	C. euippe		Linnaeus, 1758	BIOPA	TOTAL	NIMBA TOTAL
65	C. evagore	antigone	Boisduval, 1836			
66	C. liagore		Klug, 1829			
67	C. eris		Klug, 1829			

	BELENOIS Hübner, 1	819				
68	B. aurota		Fabricius, 1793			NIMBA TOTAL
69	B. creona		Cramer, 1776			
70	B. gidica		Godart, 1819			
72	B. subeida	frobeniusi	Strand, 1909			
73	B. calypso		Drury, 1773	BIOPA	TOTAL	NIMBA TOTAL
74	B. theora		Doubleday, 1846	BIOPA		
76	B. hedyle	ianthe	Doubleday, 1842			
	DIXEIA Talbot, 1932					
78	D. doxo		Godart, 1819			
79	D. orbona		Geyer, 1832			
80	D. cebron		Ward, 1871			
81	D. capricornus		Ward, 1871			
	PONTIA Fabricius, 18	207				
82	P. daplidice		Linnaeus, 1758			
83	P. glauconome		Klug, 1829			
	APPIAS Hübner, 1819	•				
84	A. sylvia		Fabricius, 1775	BIOPA	TOTAL	NIMBA TOTAL
85	A. phaola		Doubleday, 1847	BIOPA	TOTAL	NIMBA TOTAL
86	A. sabina		Felder & Felder, 1865	BIOPA		NIMBA TOTAL
87	A. epaphia		Cramer, 1779			
	LEPTOSIA Hübner, 18	818				
88	L. alcesta		Stoll, 1781		TOTAL	NIMBA TOTAL
90	L. hybrida		Bernardi, 1952			NIMBA TOTAL
91	L. medusa		Cramer, 1777		TOTAL	NIMBA TOTAL
92	L. marginea		Mabille, 1890			
93	L. wigginsi	pseudalcesta				
	MYLOTHRIS Hübner,	, 1819				
95	M. chloris		Fabricius, 1775	BIOPA	TOTAL	NIMBA TOTAL
100	M. dimidiata		Aurivillius, 1898		TOTAL	NIMBA TOTAL
103	M. aburi		Collins & Larsen, 2004			
105	M. hilara		Karsch, 1892			
106	М. рорреа		Cramer, 1777	BIOPA	TOTAL	NIMBA TOTAL
107	M. spica		Möschler, 1884			NIMBA TOTAL
109	M. rhodope		Fabricius, 1775		TOTAL	NIMBA TOTAL
110	M. jaopura		Karsch, 1893			NIMBA TOTAL
111	M. schumanni		Suffert, 1904			
			Berger, 1980			
	M. atewa		Beiger, 1900			
	M. atewa Family LYCAENIDAE	E Leach, 1815	Beiger, 1900			
		·	Barger, 1700			

	EULIPHYRA Holland, 1890				
114	E. hewitsoni	Aurivillius, 1898			
115	E. mirifica	Holland, 1890			
116	E. leucyania	Hewitson, 1874			NIMBA TOTAL
	ASLAUGA Kirby, 1890				
117	A. ernesti	Karsch, 1895			
	A. sp. n.				NIMBA TOTAL
118	A. marginalis	Kirby, 1890		TOTAL	NIMBA TOTAL
123	A. guineensis	Collins & Libert, 1997			NIMBA TOTAL
124	A. imitans	Libert, 1994			
	Aslauga. sp.				
	Tribe Miletini Reuter, 1896				
	MEGALOPALPUS Röber, 1886				
127	M. zymna	Westwood, 1851		TOTAL	NIMBA TOTAL
129	M. metaleucus	Karsch, 1893		TOTAL	NIMBA TOTAL
	Tribe Spalgini Toxopeus, 1929				
	SPALGIS Moore, 1879				
130	S. lemolea pilos	Druce, 1890		TOTAL	NIMBA TOTAL
	Tribe Lachnocnemini Clench, 1955				
	LACHNOCNEMA Trimen, 1887				
131	L. vuattouxi	Libert, 1996			
133	L. emperamus	Snellen, 1872			
135	L. disrupta	Talbot, 1935			
136	L. reutlingeri	Holland, 1892			
137	L. luna	Druce, 1910			
139	L. albimacula	Libert, 1996			
	Subfamily Lipteninae				
	Tribe Pentilini				
	PTELINA Clench, 1965				
141	P. carnuta	Hewitson, 1873	BIOPA	TOTAL	NIMBA TOTAL
	PENTILA Westwood, 1852				
142	P. pauli	Staudinger, 1888	BIOPA		NIMBA TOTAL
144	P. petreoides	Bethune-Baker, 1915			NIMBA TOTAL
145	P. bennetti	Collins & Larsen, 2004			
147	P. petreia	Hewitson, 1874			NIMBA TOTAL
148	P. cf condamini	Stempffer, 1963			NIMBA TOTAL
149	P. preussi	Staudinger, 1888			
152	P. picena	Hewitson, 1874			
	P. cf. picena				
	P. abraxas	Hewitson, 1852	BIOPA	TOTAL	NIMBA TOTAL
155	P. phidia	Hewitson, 1874			

157	P. hewitsoni		Grose-Smith & Kirby, 1887			
	TELIPNA Aurivillius, 18	95				
159	T. acraea		Westwood, 1851			NIMBA TOTAL
160	T. semirufa		Grose-Smith & Kirby, 1889			
161	T. maesseni		Stempffer, 1970			
	ORNIPHOLIDOTOS Ber	thune-Baker, 191	14			
170	O. sylviae		Stempffer, 1964			
171	O. onitshae		Stempffer, 1962			
172	O. irwini		Collins & Larsen, 1998			
173	O. issia		Stempffer, 1969			NIMBA TOTAL
174	O. tiassale		Stempffer, 1969			NIMBA TOTAL
175	O. nympha		Libert, 2000			NIMBA TOTAL
	Ornipholidotos sp.					
	TORBENIA Libert, 2000					
177	T. wojtusiaki		Libert, 2000			
	Tribe Mimacraeini					
	MIMACRAEA Butler, 18	372				
179	M. neurata		Holland, 1895			NIMBA TOTAL
181	M. darwinia		Butler, 1872	BIOPA		NIMBA TOTAL
182	M. maesseni		Libert, 2000			
	MIMERESIA Stempffer,	1961				
184	M. libentina		Hewitson, 1866		TOTAL	NIMBA TOTAL
185	M. moyambina		Bethune-Baker, 1904		TOTAL	NIMBA TOTAL
186	M. debora	catori	Bethune-Baker, 1904			NIMBA TOTAL
187	M. semirufa		Grose-Smith, 1902			
190	M. cellularis		Kirby, 1890			
191	M. issia		Stempffer, 1969			NIMBA TOTAL
	Tribe Liptenini					
	PSEUDERESIA Butler,	1874				
192	P. eleaza eleaza Hewitson	, 1873				
	ERESIOMERA Clench,	1965				
193	E. bicolor		Grose-Smith & Kirby, 1890	BIOPA		NIMBA TOTAL
194	E. isca	occidentalis	Collins & Larsen, 1998			NIMBA TOTAL
195	E. jacksoni		Stempffer, 1969			
197	E. petersi		Stempffer & Bennett, 1956		TOTAL	NIMBA TOTAL
	CITRINOPHILA Kirby,	1887				
199	C. marginalis		Kirby, 1887			NIMBA TOTAL
200	C. similis		Kirby, 1887			NIMBA TOTAL
202	C. erastus		Hewitson, 1866	BIOPA	TOTAL	NIMBA TOTAL
	ERESINA Aurivillius, 18	398				
204	E. maesseni		Stempffer, 1956			NIMBA TOTAL

205	E. fusca	Cator, 1904	TOTAL	NIMBA TOTAL
206	E. pseudofusca	Stempffer, 1961		NIMBA TOTAL
208	E. fontainei	Stempffer, 1956		
209	E. jacksoni	Stempffer, 1961		
210	E. saundersi	Stempffer, 1956		
211	E. rougeoti	Stempffer, 1956		
212	E. theodori	Stempffer, 1956		
	ARGYROCHEILA Staudinger, 1892			
213	A. undifera	Staudinger, 1892		
	LIPTENA Westwood, 1851			
216	L. submacula	Lathy, 1903	TOTAL	NIMBA TOTAL
217	L. griveaudi	Stempffer, 1969		NIMBA TOTAL
218	L. simplicia	Möschler, 1887 BIOPA	TOTAL	NIMBA TOTAL
222	L. tiassale	Stempffer, 1969		
224	L. albicans	Cator, 1904		
225	L. alluaudi	Mabille, 1890	TOTAL	NIMBA TOTAL
226	L. fatima	Kirby, 1890		
227	L. pearmani	Stempffer, Bennettt & May, 1974		
229	L. ferrymani bigoti	Stempffer, 1964		
231	L. septistrigata	Bethune-Baker, 1903		
232	L. evanescens	Kirby, 1887		
234	L. xanthostola coomassiensis	Hawker-Smith, 1933	TOTAL	NIMBA TOTAL
236	L. rochei	Stempffer, 1951 BIOPA		NIMBA TOTAL
237	L. flavicans oniens	Talbot, 1935		
239	L. seyboui	Larsen & Warren-Gash, 2001		
240	L. similis	Kirby, 1890		
241	L.modesta	(Kirby, 1890)	TOTAL	NIMBA TOTAL
242	L. helena	Druce, 1888		NIMBA TOTAL
243	L. catalina	Grose-Smith & Kirby, 1887	TOTAL	NIMBA TOTAL
	Liptena sp.			
	KAKUMIA Collins & Larsen, 1998			
246	K. otlauga	Grose-Smith & Kirby, 1890	TOTAL	NIMBA TOTAL
	FALCUNA Stempffer & Bennett, 1963	3		
249	F. leonensis	Stempffer & Bennett, 1963 BIOPA	TOTAL	NIMBA TOTAL
252	F. campimus	Holland, 1890		
	TETRARHANIS Karsch, 1893			
254	T. symplocus	Clench, 1965	TOTAL	NIMBA TOTAL
255	T. baralingam	Larsen, 1998	TOTAL	NIMBA TOTAL
257	T. diversa	Bethune-Baker, 1904		NIMBA TOTAL
260	T. stempfferi	Berger, 1954	TOTAL	NIMBA TOTAL

	LARINOPODA Butler, 18	71				
265	L. eurema		Plötz, 1880	BIOPA	TOTAL	NIMBA TOTAL
	MICROPENTILA Aurivil	lius, 1895				
266	M. adelgitha		Hewitson, 1874	BIOPA		NIMBA TOTAL
267	M. adelgunda		Staudinger, 1892			
268	M. dorothea		Bethune-Baker, 1903			NIMBA TOTAL
270	M. brunnea		Kirby, 1887			NIMBA TOTAL
	M. 'safiani'					
273	M. nigeriana		Stempffer & Bennett, 1965			
274	M. mabangi		Bethune-Baker, 1904			
275	M. mamfe		Larsen, 1986			
	Tribe Epitolini Jackson, 1	1962				
	TERATONEURA Dudgeo	n, 1909				
276	T. isabellae		Dudgeon, 1909			
	IRIDANA Aurivillius, 192	1				
277	I. incredibilis		Staudinger, 1891			
278	I. rougeoti		Stempffer, 1964			
279	I. ghanana		Stempffer, 1964			
280	I. exquisita		Grose-Smith, 1898			
281	I. nigeriana		Stempffer, 1964			
282	I. hypocala		Eltringham, 1929		TOTAL	NIMBA TOTAL
	HEWITSONIA Kirby, 187	1				
283	H. boisduvalii		Hewitson, 1869			
284	H. occidentalis		Bouyer, 1997			
285	H. danane		Stempffer, 1969			
286	H. inexpectata		Bouyer, 1997			
	CERAUTOLA Libert, 199	9				
289	C. crowleyi		Sharpe, 1890		TOTAL	NIMBA TOTAL
291	C. ceraunia		Hewitson, 1873		TOTAL	NIMBA TOTAL
293	C. miranda		Staudinger, 1889			NIMBA TOTAL
	EPITOLA Westwood, 185	1				
294	E. posthumus		Fabricius, 1793	BIOPA		NIMBA TOTAL
295	E. uranoides of	ccidentalis	Libert, 1999			NIMBA TOTAL
296	E. urania		Kirby, 1887	BIOPA		
	CEPHETOLA Libert, 199	9				
297	C. cephena		Hewitson, 1873		TOTAL	NIMBA TOTAL
298	C. maculata		Hawker-Smith, 1926			
299	C. pinodes		Druce, 1890			
	C. pinodes b	udduana	Talbot, 1937			
300	C. subcoerulea		Roche, 1954			
301	C. nigra		Bethune-Baker, 1903			

302	C. mercedes	ivoriensis	Jackson, 1967		
303	C. obscura		Hawker-Smith, 1933	TOTA	L NIMBA TOTAL
305	C. sublustris		Bethune-Baker, 1904		
306	C. maesseni		Libert, 1999		
307	C. collinsi		Libert & Larsen, 1999		
	C. sp. n.				NIMBA TOTAL
	HYPOPHYTALA Cle	nch, 1965			
308	H. hyettoides		Aurivillius, 1895		
309	H. ultramarina		Libert & Collins, 2004		
310	H. hyettina		Aurivillius, 1897		NIMBA TOTAL
311	H. henleyi		Kirby, 1890		
312	H. benitensis		Holland, 1890		
	PHYTALA Westwood	, 1851			
314	P. elais	catori	Bethune-Baker, 1903		NIMBA TOTAL
	P. elais		Westwood, 1851		
	GERITOLA Libert, 19	999			
315	G. gerina		Hewitson, 1878		NIMBA TOTAL
317	G. albomaculata		Bethune-Baker, 1903		NIMBA TOTAL
320	G. virginea		Bethune-Baker, 1904		
321	G. subargentea	continua	Libert, 1999	BIOPA	NIMBA TOTAL
	Geritola sp.				
	STEMPFFERIA Jack	kson, 1962			
322	S. cercene		Hewitson, 1873		NIMBA TOTAL
323	S. baoule		Libert, 1999		
324	S. moyambina		Bethune-Baker, 1903	TOTA	L NIMBA TOTAL
326	S. dorothea		Bethune-Baker, 1904		NIMBA TOTAL
	S. leonina		Staudinger, 1888		NIMBA TOTAL
	S. ciconia		Grose-Smith & Kirby, 1892	TOTA	L NIMBA TOTAL
	S. zelza		Hewitson, 1873		
	S. cf zelza				NIMBA TOTAL
	S. michelae		Libert, 1999	BIOPA	NIMBA TOTAL
	S. kholifa		BethuneBaker, 1904		NIMBA TOTAL
	S. staudingeri		Kirby, 1890		
	S. sp. n.	n /			NIMBA TOTAL
246	AETHIOPANA Bethu	•	D d 1001	mor •	NIMPA TOTAL
346	A. honorius	divisa	Butler, 1901	TOTA	L NIMBA TOTAL
2.45	EPITOLINA Aurivilli	us, 1895	V:.h., 1997	mor •	NIMPA TOTAL
	E. dispar		Kirby, 1887	TOTA	
	E. melissa		Druce, 1888	TOTA	L NIMBA TOTAL
	E. collinsi		Libert, 2000		
350	E. catori		Bethune-Baker, 1904		

	NEAVEIA Druce, 1910				
352	N. lamborni	Druce, 1910			
	Subfamily Theclinae Swainson, 1830				
	Tribe Amblypodiini Doherty, 1886				
	MYRINA Fabricius, 1807				
354	M. silenus	Fabricius, 1775	BIOPA		NIMBA TOTAL
355	M. subornata	Lathy, 1903		TOTAL	NIMBA TOTAL
	Tribe Oxylidini Eliot, 1973				
	OXYLIDES Hübner, 1819				
356	O. faunus	Drury, 1773	BIOPA	TOTAL	NIMBA TOTAL
	Tribe Loxurini Swinhoe, 1910				
	DAPIDODIGMA Karsch, 1895				
359	D. hymen	Fabricius, 1775		TOTAL	NIMBA TOTAL
360	D. demeter	Clench, 1961			NIMBA TOTAL
	Tribe Aphnaeini Distant, 1884				
	APHNAEUS Hübner, 1819				
361	A. orcas	Drury, 1782		TOTAL	NIMBA TOTAL
362	A. argyrocyclus	Holland, 1890		TOTAL	NIMBA TOTAL
363	A. asterius	Plötz, 1880			
364	A. brahami	Lathy, 1903			
365	A. jefferyi	Hawker-Smith, 1928			
366	A. charboneli	Bouyer & Libert, 1996			
367	A. gilloni	Stempffer, 1966			
	A. mirabilis	Sáfián & Collins, 2013		TOTAL	NIMBA TOTAL
	A. nimbaensis	Sáfián & Libert, 2013		TOTAL	NIMBA TOTAL
	APHARITIS Riley, 1925				
368	A. nilus	Hewitson, 1865			
	SPINDASIS Wallengren, 1857				
369	S. mozambica	Bertolini, 1850			
370	S. avriko	Karsch, 1893			
	S. crustaria	Holland, 1890			
372	S. iza	Hewitson, 1865		TOTAL	NIMBA TOTAL
373	S. menelas	Druce, 1907			
	ZERITIS Boisduval, 1836				
374	Z. neriene	Boisduval, 1836			
	AXIOCERSES Hübner, 1819				
375	A. harpax	Fabricius, 1775	BIOPA	TOTAL	NIMBA TOTAL
377	A. amanga	Westwood, 1881			
	LIPAPHNAEUS Aurivillius, 1916				
378	L. leonina	Sharpe, 1890		TOTAL	NIMBA TOTAL
	L. leonina ivoirensis	Stempffer, 1966			

270	I alama	DI#4_ 1000		
3/9	L. aderna BEELDALETIS Drugs 1888	Plötz, 1880		
290	PSEUDALETIS Druce, 1888	Druce, 1888		
	P. agrippina P. cf agrippina	Diuce, 1888		
	P. catori	Bethune-Baker, 1926		
	P. subangulata	Talbot, 1935		
	P. malangi	Collins & Larsen, 1995		
	P. richardi	Stempffer, 1953		
	P. batesi	Druce, 1910		
	P. dardanella	Riley, 1922		
	P. leonis	Staudinger, 1888	TOTAL	NIMBA TOTAL
0,1	P. jolyana	5.mudm.gv1, 1000	101112	NIMBA TOTAL
	Tribe IOLAINI Riley, 1958			
	IOLAUS Hübner, 1819			
	Subgenus Iolaus Hübner, 1819			
392	I. eurisus	Cramer, 1779		NIMBA TOTAL
	Subgenus Iolaphilus Stempffer & Bo	ennett, 1958		
393	I. menas	Druce, 1890		
395	I. carolinae	Collins & Larsen, 2000		
396	I. alexanderi	Warren-Gash, 2004		
397	I. iulus	Hewitson, 1869		NIMBA TOTAL
	Subgenus Argiolaus Druce, 1891			
398	I. ismenias	Klug, 1834		
399	I. newporti	Larsen, 1994		
400	I. alcibiades	Kirby, 1871	TOTAL	NIMBA TOTAL
401	I. parasilanus maesseni	Stempffer & Bennett, 1958		NIMBA TOTAL
402	I. paneperata	Druce, 1890		NIMBA TOTAL
403	I. lukabas	Druce, 1890		NIMBA TOTAL
404	I. mane	Collins & Larsen, 2004		NIMBA TOTAL
405	I. theodori	Stempffer, 1970	TOTAL	NIMBA TOTAL
406	I. likpe	Collins & Larsen, 2004		
407	I. calisto	Westwood, 1851	TOTAL	NIMBA TOTAL
408	I. laonides	Aurivillius, 1898		NIMBA TOTAL
	Subgenus Tanuetheira Druce, 1891			
410	I. timon	Fabricius, 1787		NIMBA TOTAL
	Subgenus Epamera Druce, 1891			
	I. alienus bicaudatus	Aurivillius, 1905		
	I. sudanicus	Aurivillius, 1905		
	I. scintillans	Aurivillius, 1905		
	I. laon	Hewitson, 1878		
417	I. moyambina	Stempffer & Bennett, 1959		NIMBA TOTAL

418	I. banco		Stempffer, 1966			
420	I. leonis		Riley, 1928			
421	I. pollux	oberthueri	Riley, 1929		TOTAL	NIMBA TOTAL
422	I. djaloni		Collins & Larsen, 1998			
424	I. longicauda	haydoni	Collins & Larsen, 2000		TOTAL	NIMBA TOTAL
425	I. normani	театиі	Collins & Larsen, 2005			
	I. normani		Larsen, 1986			
426	I. sappirus		Druce, 1902		TOTAL	NIMBA TOTAL
432	I. fontainei		Stempffer, 1956			NIMBA TOTAL
434	I. aethria		Karsch, 1893		TOTAL	NIMBA TOTAL
435	I. farquharsoni		Bethune-Baker, 1922			NIMBA TOTAL
436	I. iasis		Hewitson, 1865		TOTAL	NIMBA TOTAL
437	I. maesa		Hewitson, 1862			
	ETESIOLAUS Stempffe	er & Bennett, 1959				
439	E. catori		Bethune-Baker, 1904			
440	E. kyabobo		Larsen, 1996			
	STUGETA Druce, 1891	•				
441	S. marmoreus		Butler, 1866			
442	S. occidentalis		Stempffer & Bennett, 1958			
	Tribe Hypolycaenini Sv	vinhoe, 1910				
	HYPOLYCAENA Felde	er, 1862				
443	H. philippus		Fabricius 1793			
444	H. kadiskos		Druce, 1890			
445	H. liara		Druce, 1890		TOTAL	NIMBA TOTAL
446	H. lebona		Hewitson, 1865			NIMBA TOTAL
447	H. clenchi		Larsen, 1997			
449	H. scintillans		Stempffer, 1957		TOTAL	NIMBA TOTAL
450	H. dubia		Aurivillius, 1895		TOTAL	NIMBA TOTAL
451	H. kakumi		Larsen, 1997			NIMBA TOTAL
452	H. antifaunus		Westwood, 1851	BIOPA	TOTAL	NIMBA TOTAL
453	H. hatita		Hewitson, 1865		TOTAL	NIMBA TOTAL
454	H. anara		Larsen, 1986			
455	H. nigra		Bethune-Baker, 1914		TOTAL	NIMBA TOTAL
456	H. condamini		Stempffer, 1956			
	Tribe Deudorigini Doh	erty, 1887				
	PILODEUDORIX Druc	ce, 1891				
457	P. camerona		Plötz, 1880		TOTAL	NIMBA TOTAL
458	P. diyllus		Hewitson, 1878		TOTAL	NIMBA TOTAL
460	P. caerulea		Druce, 1890			
461	P. zela		Hewitson, 1869		TOTAL	NIMBA TOTAL
462	P. catori		Bethune-Baker, 1903		TOTAL	NIMBA TOTAL

161	D 1 11		1.1 4.2004			
	P. hamidou		Libert, 2004			
	P. mera		Hewitson, 1873			
	P. otraeda		Hewitson, 1863			
468	P. leonina		Bethune-Baker, 1904		TOTAL	NIMBA TOTAL
469	P. virgata		Druce, 1891		TOTAL	NIMBA TOTAL
473			Hewitson, 1874			
	P. aucta		Karsch, 1895		TOTAL	NIMBA TOTAL
	P. pseudoderitas		Stempffer, 1964			
476	P. laticlavia		Clench, 1965			
477	P. aurivilliusi		Stempffer, 1954		TOTAL	NIMBA TOTAL
478	P. kiellandi		Congdon & Collins, 1998			NIMBA TOTAL
479	P. corruscans	kakumi	Larsen, 1994			
480	P. violetta		Aurivillius, 1897		TOTAL	NIMBA TOTAL
481	P. fumata		Stempffer, 1954			
	Pilodeudorix intermedia				TOTAL	NIMBA TOTAL
	Pilodeudorix putu					NIMBA TOTAL
	Pilodeudorix mano					NIMBA TOTAL
	PARADEUDORIX Libe	ert, 2004				
484	P. eleala	viridis	Stempffer, 1964			
	P. eleala		Hewitson, 1865		TOTAL	NIMBA TOTAL
485	P. petersi		Stempffer & Bennett, 1956			NIMBA TOTAL
487	P. moyambina		Bethune-Baker, 1904			
	HYPOMYRINA Druce,	1891				
491	H. mimetica		Libert, 2004			
492	H. nomion		Staudinger, 1891		TOTAL	NIMBA TOTAL
	DEUDORIX Hewitson,	1863				
494	D. antalus		Hopffer, 1855			NIMBA TOTAL
495	D. livia		Klug, 1834			
	D. lorisona	abriana	Libert, 2004			
496	D. lorisona		Hewitson, 1862		TOTAL	NIMBA TOTAL
497	D. cf. kayonza		Stempffer, 1956			NIMBA TOTAL
498	D. dinochares		Grose-Smith, 1887			
499	D. dinomenes		Jackson, 1966			
500	D. odana		Druce, 1887		TOTAL	NIMBA TOTAL
501	D. galathea		Swainson, 1821	BIOPA	TOTAL	NIMBA TOTAL
502	D. caliginosa		Lathy, 1903			NIMBA TOTAL
	CAPYS Hewitson, 1865					
506	C. vorgasi		Larsen & Collins, 2004			
	Subfamily Polyommatin	nae Swainson, 182	7			
	Tribe Lycaenesthini To	exopeus, 1929				

ANTHENE Doubleday, 1847

507	A. rubricinctus ssp.	Holland, 1891	BIOPA	TOTAL	NIMBA TOTAL
508	A. ligures	Hewitson, 1874			
510	A. sylvanus	Drury, 1773		TOTAL	NIMBA TOTAL
512	A. liodes	Hewitson, 1874		TOTAL	NIMBA TOTAL
513	A. definita	Butler, 1899			
514	A. princeps	Butler, 1876		TOTAL	NIMBA TOTAL
515	A. starki	Larsen, 2005			
516	A. amarah	Guérin-Méneville, 1847			NIMBA TOTAL
517	A. lunulata	Trimen, 1894		TOTAL	NIMBA TOTAL
518	A. kikuyu	Bethune-Baker, 1910			
519	A. talboti	Stempffer, 1936			
520	A. wilsoni	Talbot, 1935			
521	A. levis	Hewitson, 1878			
522	A. irumu	Stempffer, 1948		TOTAL	NIMBA TOTAL
523	A. larydas	Cramer, 1780	BIOPA	TOTAL	NIMBA TOTAL
524	A. crawshayi	Butler, 1899		TOTAL	NIMBA TOTAL
525	A. lachares	Hewitson, 1878			NIMBA TOTAL
527	A. lysicles	Hewitson, 1874	BIOPA	TOTAL	NIMBA TOTAL
530	A. atewa	Larsen & Collins, 1998			
531	A. flavomaculatus	Grose-Smith & Kirby, 1893			
532	A. radiata	Bethune-Baker, 1910			
534	A. locuples	Grose-Smith, 1898			
535	A. mahota	Grose-Smith, 1887			
537	A. scintillula aurea	Bethune-Baker, 1910			NIMBA TOTAL
538	A. helpsi	Larsen, 1994			
539	A. juba	Fabricius, 1787		TOTAL	NIMBA TOTAL
	NEURYPEXINA Bethune-Baker, 1910				
540	N. lyzanius	Hewitson, 1874		TOTAL	NIMBA TOTAL
	NEURELLIPES Bethune-Baker, 1910				
542	N. lusones	Hewitson, 1874	BIOPA	TOTAL	NIMBA TOTAL
543	N. fulvimacula	Mabille, 1890		TOTAL	NIMBA TOTAL
	N. kampala incerta			TOTAL	NIMBA TOTAL
544	N. fulvus	Stempffer, 1962			
545	N. staudingeri	Grose-Smith & Kirby, 1894			
546	N. gemmifera	Neave, 1910		TOTAL	NIMBA TOTAL
	TRICLEMA Karsch, 1893				
547	T. rufoplagata	Bethune-Baker, 1910			NIMBA TOTAL
548	T. lucretilis	Hewitson, 1874		TOTAL	NIMBA TOTAL
549	T. lamias	Hewitson, 1878		TOTAL	NIMBA TOTAL
550	T. fasciatus	Aurivillius, 1895			NIMBA TOTAL
551	T. obscura	Druce, 1910		TOTAL	

552	T. inconspicua		Druce, 1910			
554	T. hades		Bethune-Baker, 1910			
555	T. phoenicis		Karsch, 1893		TOTAL	NIMBA TOTAL
556	T. nigeriae		Aurivillius, 1905			NIMBA TOTAL
	Triclema sp.					
	CUPIDESTHES Aurivi	llius, 1895				
559	C. salvatoris		Belcastro & Larsen, 2005			
560	C. jacksoni		Stempffer, 1969		TOTAL	NIMBA TOTAL
561	C. henryi		Libert, 2010			
562	C. lithas		Druce, 1890		TOTAL	NIMBA TOTAL
564	C. leonina		Bethune-Baker, 1903			
564a	C. pungusei		Collins & Larsen, 2005			
	Tribe Polyommatini Sw	vainson, 1827				
	PSEUDONACADUBA ,	Stempffer, 1944				
565	P. sichela		Wallengren, 1857		TOTAL	NIMBA TOTAL
	LAMPIDES Hübner, 18	819				
567	L. boeticus		Linnaeus, 1767	BIOPA		NIMBA TOTAL
	URANOTHAUMA Butl	er, 1895				
568	U. falkensteini		Dewitz, 1879	BIOPA	TOTAL	NIMBA TOTAL
570	U. belcastroi		Larsen, 1997	BIOPA		NIMBA TOTAL
	PHLYARIA Karsch, 189	95				
574	P. cyara	stactalla	Karsch, 1895	BIOPA	TOTAL	NIMBA TOTAL
	CACYREUS Butler, 189	98				
575	C. lingeus		Stoll, 1782	BIOPA		NIMBA TOTAL
576	C. virilis		Stempffer, 1936			
577	C. audeoudi		Stempffer, 1936			
	LEPTOTES Scudder, 18	876				
578	L. pirithous		Linnaeus, 1767		TOTAL	NIMBA TOTAL
579	L. babaulti		Stempffer, 1935			
580	L. jeanneli		Stempffer, 1935			
581	L. brevidentatus		Tite, 1958			
582	L. pulchra		Murray, 1874			
	TUXENTIUS Larsen, 1	982				
583	T. cretosus	nodieri	Oberthür, 1883			
584	T. carana	kontu	Karsch, 1893		TOTAL	NIMBA TOTAL
	TARUCUS Moore, 1881	1				
586	T. ungemachi		Stempffer, 1942			
587	T. theophrastus		Fabricius, 1793			
588	T. rosacea		Austaut, 1885			
589	T. kiki		Larsen, 1976			
590	T. legrasi		Stempffer, 1948			

591	T. balkanicus		Freyer, 1843			
	ACTIZERA Chapman,	1910				
592	A. lucida		Trimen, 1883			
	EICOCHRYSOPS Beth	une-Baker, 1924				
593	E. hippocrates		Fabricius, 1793	BIOPA	TOTAL	NIMBA TOTAL
594	E. dudgeoni		Riley, 1929			
	CUPIDOPSIS Karsch,	1895				
595	C. jobates	mauritanica	Riley, 1932			
596	C. cissus		Godart, 1824	BIOPA		NIMBA TOTAL
	EUCHRYSOPS Butler,	1900				
598	E. albistriata	greenwoodi	D'Abrera, 1980			
600	E. reducta		Hulstaert, 1924			
601	E. malathana		Boisduval, 1833	BIOPA	TOTAL	NIMBA TOTAL
602	E. nilotica		Aurivillius, 1904			
604	E. osiris		Hopffer, 1855			
605	E. barkeri		Trimen, 1893			
606	E. sahelianus		Libert, 2001			
	LEPIDOCHRYSOPS H	ledicke, 1923				
607	L. victoriae	occidentalis	Libert & Collins, 2001			
608	L. parsimon		Fabricius, 1775			NIMBA TOTAL
610	L. labeensis		Larsen & Warren-Gash, 2000			
						NIMBA TOTAL
	L. synchrematiza		Bethune-Baker, 1923			NIMBA TOTAL
	L. polydialecta		Bethune-Baker, 1923			
013	L. quassi quassi	esah 1905	Karsch, 1895			
617	THERMONIPHAS Kar	scn, 1093	Cromor 1790	BIOPA		NIMBA TOTAL
01/	T. micylus	p n 2	Cramer, 1780	DIUPA		MIMDA IUIAL
	OBORONIA Karsch, 18	173				

622	O. punctatus	Dewitz, 1879			NIMBA TOTAL
623	O. liberiana	Stempffer, 1950			
625	O. guessfeldti	Dewitz, 1879			
626	O. ornata	Mabille, 1890		TOTAL	NIMBA TOTAL
	AZANUS Moore, 1881				
627	A. ubaldus	Cramer, 1782			
628	A. jesous	Guérin-Méneville, 1847			
629	A. moriqua	Wallengren, 1857			
630	A. mirza	Plötz, 1880	BIOPA	TOTAL	NIMBA TOTAL
631	A. natalensis	Trimen, 1887			
632	A. isis	Drury, 1773	BIOPA	TOTAL	NIMBA TOTAL
	CHILADES Moore, 1881				
633	C. eleusis	Demaison, 1888			
634	C. trochylus	Freyer, 1843			
	ZIZEERIA Chapman, 1910				
635	Z. knysna	Trimen, 1862			NIMBA TOTAL
	ZIZINA Chapman, 1910				

636	Z. antanossa	Mabille, 1877		NIMBA TOTAL
	ZIZULA Chapman, 1910			
637	Z. hylax	Fabricius, 1775	TOTAL	NIMBA TOTAL
	Family RIODINIDAE Grote, 1895			
	Subfamily Nemeobiinae Bates, 1868			
	ABISARA Felder & Felder, 1860			
638	A. intermedia	Aurivillius, 1895		
639	A. tantalus	Hewitson, 1861		
642	A. gerontes	Fabricius, 1781		
	Family NYMPHALIDAE Swainson, 1822	7		
	Subfamily Libytheinae Boisduval, 1833			
	LIBYTHEA Fabricius, 1807			
646	L. labdaca	Westwood, 1851 BIO	OPA TOTAL	NIMBA TOTAL
	Subfamily Danainae Boisduval, 1833			
	Tribe Danaini Boisduval, 1833			
	DANAUS Kluk, 1802			
647	D. chrysippus	Linnaeus, 1758 BIO	OPA TOTAL	NIMBA TOTAL
	TIRUMALA Moore, 1880			
648	T. petiverana	Doubleday, 1847 BIO	OPA TOTAL	NIMBA TOTAL
	AMAURIS Hübner, 1816			
650	A. niavius	Linnaeus, 1758 BIO	OPA TOTAL	NIMBA TOTAL
651	A. tartarea	Mabille, 1876 BIO	OPA TOTAL	NIMBA TOTAL
652	A. hecate	Butler, 1866		NIMBA TOTAL
653	A. damocles	Fabricius, 1793	TOTAL	NIMBA TOTAL
	Subfamily Satyrinae Boisduval, 1833			
	Tribe Melanitini Reuter, 1896			
	GNOPHODES Westwood, 1849			
656	G. betsimena parmeno	Doubleday, 1849 BIG	OPA TOTAL	NIMBA TOTAL
657	G. chelys	Fabricius, 1793 BIO	OPA TOTAL	NIMBA TOTAL
	MELANITIS Fabricius, 1807			
658	M. leda	Linnaeus, 1758 BIO	OPA TOTAL	NIMBA TOTAL
659	M. libya	Distant, 1882 BIG	OPA	NIMBA TOTAL
660	M. ansorgei	Rothschild, 1904		
	Tribe Elymniini Herrich-Schäffer, 1864			
	ELYMNIOPSIS Fruhstorfer, 1907			
661	E. bammakoo	Westwood, 1851	TOTAL	NIMBA TOTAL
	BICYCLUS Kirby, 1871			
	B. xeneas occidentalis		TOTAL	
665	B. evadne	Cramer, 1779	TOTAL	NIMBA TOTAL
	B. ephorus	•	OPA TOTAL	NIMBA TOTAL
672	B. italus	Hewitson, 1865		

673	B. zinebi		Butler, 1869	BIOPA	TOTAL	NIMBA TOTAL
674	B. uniformis		Bethune-Baker, 1908			
678	B. procora		Karsch, 1893		TOTAL	NIMBA TOTAL
679	B. pavonis		Butler, 1876			
680	B. milyas		Hewitson, 1864			
	B. trilophus	jacksoni	Condamin, 1961			NIMBA TOTAL
	B. maesseni		Condamin, 1971			NIMBA TOTAL
	B. larseni		van de Weghe, 2009		TOTAL	NIMBA TOTAL
	B. taenias		Hewitson, 1877	BIOPA	TOTAL	NIMBA TOTAL
	B. vulgaris		Butler, 1868	BIOPA	TOTAL	NIMBA TOTAL
	B. dorothea		Cramer, 1779	BIOPA	TOTAL	NIMBA TOTAL
	B. sandace		Hewitson, 1877		TOTAL	NIMBA TOTAL
693	B. sambulos	unicolor	Condamin, 1971		TOTAL	NIMBA TOTAL
694	B. sangmelinae		Condamin, 1963		TOTAL	NIMBA TOTAL
695	B. mandanes		Hewitson, 1873		TOTAL	NIMBA TOTAL
696	B. auricruda		Butler, 1868	BIOPA	TOTAL	NIMBA TOTAL
697	B. campa		Karsch, 1893			
698	B. angulosa		Butler, 1868			NIMBA TOTAL
699	B. sylvicolus		Condamin, 1965			
700	B. abnormis		Dudgeon, 1909		TOTAL	NIMBA TOTAL
701	B. safitza		Hewitson, 1851	BIOPA	TOTAL	NIMBA TOTAL
702	B. funebris		Guérin-Méneville, 1844	BIOPA	TOTAL	NIMBA TOTAL
704	B. dekeyseri		Condamin, 1958		TOTAL	NIMBA TOTAL
705	B. istaris		Plötz, 1880		TOTAL	NIMBA TOTAL
707	B. madetes		Hewitson, 1874		TOTAL	NIMBA TOTAL
709	B. martius		Fabricius, 1793	BIOPA	TOTAL	NIMBA TOTAL
	HALLELESIS Condam	in, 1961				
712	H. halyma		Fabricius, 1793	BIOPA	TOTAL	NIMBA TOTAL
	HENOTESIA Butler, 18	879				
713	H. elisi		Karsch, 1893			
	HETEROPSIS Westwood	od, 1850				
714	H. peitho		Plötz, 1880	BIOPA	TOTAL	NIMBA TOTAL
	Tribe Satyrini Boisduve	al, 1833				
	YPTHIMA Hübner, 181	18				
715	Y. asterope		Klug, 1832			
716	Y. condamini	nigeriae	Kielland, 1982			
717	Y. antennata	cornesi	Kielland, 1982			
718	Y. vuattouxi		Kielland, 1982			
719	Y. doleta		Kirby, 1880		TOTAL	NIMBA TOTAL
720	Y. lamto		Kielland, 1982			
721	Y. pupillaris		Butler, 1888			

722	Y. impura		Elwes & Edwards, 1893			NIMBA TOTAL
	YPTHIMOMORPHA v	an Son, 1955				
724	Y. itonia		Hewitson, 1865			
	Subfamily Charaxinae	Guenée, 1865				
	Tribe Charaxini Guené	e, 1865				
	CHARAXES Ochsenhe	imer, 1816				
725		vologeses	Mabille, 1876	BIOPA	TOTAL	NIMBA TOTAL
726	C. fulvescens	senegala	van Someren, 1975		TOTAL	NIMBA TOTAL
728	C. candiope		Godart, 1824	BIOPA	TOTAL	NIMBA TOTAL
729	C. protoclea		Feisthamel, 1850	BIOPA	TOTAL	NIMBA TOTAL
730	C. boueti		Feisthamel, 1850		TOTAL	NIMBA TOTAL
731	C. cynthia		Butler, 1866	BIOPA	TOTAL	NIMBA TOTAL
732	C. lucretius		Cramer, 1775	BIOPA	TOTAL	NIMBA TOTAL
733	C. lactetinctus		Karsch, 1892			
734	C. epijasius		Reiche, 1850			
735	C. legeri		Plantrou, 1978			
736	C. castor		Cramer, 1775	BIOPA	TOTAL	NIMBA TOTAL
737	C. brutus		Cramer, 1779	BIOPA	TOTAL	NIMBA TOTAL
738	C. pollux		Cramer, 1775	BIOPA	TOTAL	NIMBA TOTAL
	C. eudoxus	goubandana	Nicat, 2002			
740	C. eudoxus		Drury, 1782	BIOPA	TOTAL	NIMBA TOTAL
741	C. tiridates		Cramer, 1777	BIOPA	TOTAL	NIMBA TOTAL
742	C. bipunctatus		Rothschild, 1894			
743	C. numenes		Hewitson, 1859	BIOPA	TOTAL	NIMBA TOTAL
744	C. smaragdalis	butleri	Rothschild, 1900	BIOPA		NIMBA TOTAL
745	C. imperialis		Butler, 1874	BIOPA	TOTAL	NIMBA TOTAL
746	C. ameliae	doumeti	Henning, 1989	BIOPA	TOTAL	NIMBA TOTAL
747	C. pythodoris	davidi	Plantrou, 1973			
748	C. hadrianus		Ward, 1871		TOTAL	NIMBA TOTAL
750	C. nobilis	claudei	le Moult, 1933			NIMBA TOTAL
752	C. fournierae	jolybouyeri	Vingerhoedt, 1998			
753	C. zingha		Stoll, 1780	BIOPA	TOTAL	NIMBA TOTAL
754	C. etesipe		Godart, 1824	BIOPA	TOTAL	NIMBA TOTAL
755	C. achaemenes	atlantica	van Someren, 1970	BIOPA		NIMBA TOTAL
756	C. eupale		Drury, 1782	BIOPA	TOTAL	NIMBA TOTAL
757	C. subornatus	couilloudi	Plantrou, 1976	BIOPA	TOTAL	NIMBA TOTAL
758	C. anticlea		Drury, 1782	BIOPA	TOTAL	NIMBA TOTAL
759	C. hildebrandti	gillesi	Plantrou, 1973			NIMBA TOTAL
760	C. etheocles		Cramer, 1777		TOTAL	NIMBA TOTAL
762	C. petersi		van Someren, 1969		TOTAL	NIMBA TOTAL
763	C. angelae		Minig, 1975			

765	C. bocqueti		Minig, 1975			
766	C. dreuxi		Bouche & Minig, 1977			
767	C. virilis		van Som. & Jackson, 1952		TOTAL	NIMBA TOTAL
768	C. cedreatis		Hewitson, 1874		TOTAL	NIMBA TOTAL
769	C. plantroui		Minig, 1975			
770	C. viola		Butler, 1866			NIMBA TOTAL
771	C. northcotti		Rothschild, 1899			
772	C. pleione		Godart, 1824	BIOPA	TOTAL	NIMBA TOTAL
773	C. paphianus	falcata	Butler, 1872	BIOPA	TOTAL	NIMBA TOTAL
774	C. nichetes	bouchei	Grose-Smith, 1883	BIOPA	TOTAL	NIMBA TOTAL
	C. nichetes	leopardinus	Plantrou, 1974			
775	C. porthos	gallayi	Grose-Smith, 1883			NIMBA TOTAL
776	C. zelica		Butler, 1869			NIMBA TOTAL
777	C. lycurgus		Fabricius, 1793	BIOPA	TOTAL	NIMBA TOTAL
778	C. mycerina		Godart, 1824			NIMBA TOTAL
779	C. doubledayi		Aurivillius, 1898			
	Tribe Euxanthini Rydo	n, 1971				
	EUXANTHE Hübner,	1819				
780	E. eurinome		Cramer, 1775	BIOPA	TOTAL	NIMBA TOTAL
	Tribe Pallini Rydon, 19	971				
	PALLA Hübner, 1819					
783	P. violinitens		Crowley, 1890	BIOPA		NIMBA TOTAL
784	P. decius		Cramer, 1777	BIOPA	TOTAL	NIMBA TOTAL
785	P. ussheri		Butler, 1870	BIOPA	TOTAL	NIMBA TOTAL
786	P. publius		Staudinger, 1892	BIOPA	TOTAL	NIMBA TOTAL
	Subfamily APATURIN	AE Boisduval, 1	840			
	APATUROPSIS Aurivi	illius, 1898				
786a	A. cleochares		Hewitson, 1873			
	Subfamily Nymphalina	e Swainson, 182	7			
	Tribal status uncertain					
	KALLIMOIDES Shirô	zu & Nakanishi,	1984			
787	K. rumia		Doubleday, 1849	BIOPA	TOTAL	NIMBA TOTAL
	VANESSULA Dewitz,	1887				
788	V. milca	angustifascia		BIOPA		NIMBA TOTAL
	Tribe Nymphalini Swa	inson, 1827				
	ANTANARTIA Rothsc	hild & Jordan, 1	903			
789	A. delius		Drury, 1782	BIOPA	TOTAL	NIMBA TOTAL
	VANESSA Fabricius, I	1807				
791	V. cardui		Linnaeus, 1758	BIOPA		NIMBA TOTAL
	Tribe Junoniini Reuter	r, 1896				
	PRECIS Hübner, 1819					

792	P. octavia		Cramer, 1777	BIOPA	TOTAL	NIMBA TOTAL
793	P. antilope		Feisthamel, 1850			
794	P. frobeniusi		Strand, 1909			
795	P. coelestina		Dewitz, 1879			
796	P. ceryne	ceruana	Rothschild & Jordan, 1903			
797	P. pelarga		Fabricius, 1775	BIOPA	TOTAL	NIMBA TOTAL
798	P. sinuata		Plötz, 1880	BIOPA	TOTAL	NIMBA TOTAL
799	P. milonia				TOTAL	NIMBA TOTAL
	HYPOLIMNAS Hübne	er, 1819				
801	H. misippus		Linnaeus, 1764	BIOPA	TOTAL	NIMBA TOTAL
802	H. anthedon		Doubleday, 1845	BIOPA	TOTAL	NIMBA TOTAL
803	H. dinarcha		Hewitson, 1865			NIMBA TOTAL
805	H. aubergeri		Hecq, 1987			NIMBA TOTAL
806	H. salmacis		Drury, 1773	BIOPA	TOTAL	NIMBA TOTAL
	SALAMIS Boisduval, I	1833				
808	S. cacta		Fabricius, 1793	BIOPA	TOTAL	NIMBA TOTAL
	PROTOGONIOMORPI	HA Wallengren, 1	857			
809	P. cytora		Doubleday, 1847	BIOPA	TOTAL	NIMBA TOTAL
811	P. parhassus		Drury, 1782	BIOPA	TOTAL	NIMBA TOTAL
812	P. anacardii		Linnaeus, 1758			
	JUNONIA Hübner, 18	19				
813	J. orithya	madagascariensi	S			NIMBA TOTAL
814	J. oenone		Linnaeus, 1758	BIOPA	TOTAL	NIMBA TOTAL
815	J. hierta	cebrene	Trimen, 1870	BIOPA	TOTAL	NIMBA TOTAL
816	J. cymodoce		Cramer, 1777			
817	J. westermanni		Westwood, 1870			
818	J. hadrope		Doubleday, 1847			
819	J. sophia		Fabricius,1793		TOTAL	NIMBA TOTAL
820	J. stygia		Aurivillius, 1894	BIOPA	TOTAL	NIMBA TOTAL
822	J. chorimene		Guérin-Méneville, 1844		TOTAL	NIMBA TOTAL
823	J. terea		Drury, 1773		TOTAL	NIMBA TOTAL
	CATACROPTERA Kan	rsch, 1894				
824	C. cloanthe	ligata	Rothschild & Jordan, 1903	BIOPA	TOTAL	NIMBA TOTAL
	Subfamily Cyrestinae	Guenée, 1865				
	Tribe Cyrestini Guené	e, 1865				
	CYRESTIS Boisduval,	1832				
825	C. camillus		Fabricius, 1781		TOTAL	NIMBA TOTAL
	Subfamily Biblidinae	Boisduval, 1833				
	Tribe Eurytelini Doub	leday, 1845				
	BYBLIA Hübner, 1819)				
826	B. anvatara	crameri	Aurivillius, 1894	BIOPA	TOTAL	NIMBA TOTAL

827	B. ilithyia		Drury, 1773			
	MESOXANTHA Aurivi	llius, 1898				
828	M. ethosea		Drury, 1782	BIOPA	TOTAL	NIMBA TOTAL
	M. liberiana					NIMBA TOTAL
	ARIADNE Horsfield, 18	829				
829	A. enotrea		Cramer, 1779		TOTAL	NIMBA TOTAL
830	A. albifascia		Joicey & Talbot, 1921			NIMBA TOTAL
	NEPTIDOPSIS Aurivill	lius, 1898				
833	N. ophione		Cramer, 1777	BIOPA	TOTAL	NIMBA TOTAL
	EURYTELA Boisduval,	1833				
834	E. dryope		Cramer, 1775	BIOPA	TOTAL	NIMBA TOTAL
836	E. hiarbas		Drury, 1782		TOTAL	NIMBA TOTAL
	Tribe Epicaliini Guené	e, 1865				
	SEVENIA Koçak, 1996					
837	S. occidentalium		Mabille, 1876	BIOPA		NIMBA TOTAL
838	S. boisduvali	omissa	Rothschild, 1918		TOTAL	NIMBA TOTAL
839	S. umbrina		Karsch, 1892			
	Subfamily Limenitidina	e Behr, 1864				
	Tribe Limenitidini Behr	, 1864				
	HARMA Doubleday, 18	48				
843	H. theobene		Doubleday, 1848	BIOPA	TOTAL	NIMBA TOTAL
	CYMOTHOE Hübner,	1819				
846	C. fumana		Westwood, 1850		TOTAL	NIMBA TOTAL
851	C. egesta		Cramer, 1775	BIOPA	TOTAL	NIMBA TOTAL
853	C. lurida		Butler, 1871			
857	C. adela		Staudinger, 1890			
858	C. aubergeri		Plantrou, 1977			
859	C. herminia	gongoa	Fox, 1965		TOTAL	NIMBA TOTAL
860	C. weymeri	mulatta	Suffert, 1904		TOTAL	NIMBA TOTAL
863	C. druryi		van Velzen and Larsen, 2009	BIOPA	TOTAL	NIMBA TOTAL
866	C. althea		Cramer, 1776			
868	C. jodutta		Ward, 1850		TOTAL	NIMBA TOTAL
870	C. hartigi		Belcastro, 1990		TOTAL	NIMBA TOTAL
	C. hartigi	vanessae	Warren-Gash, 2004			
872	C. coccinata		Hewitson, 1874			
873	C. mabillei		Overlaet, 1944		TOTAL	NIMBA TOTAL
878	C. sangaris		Godart, 1824	BIOPA	TOTAL	NIMBA TOTAL
878a	C. cf. sangaris					
	PSEUDONEPTIS Snell	len, 1882				
879	P. bugandensis	ianthe	Hemming, 1964	BIOPA	TOTAL	NIMBA TOTAL
	PSEUDACRAEA Westv	vood, 1850				

880	P. eurytus		Linnaeus, 1758	BIOPA	TOTAL	NIMBA TOTAL
884	P. boisduvalii		Doubleday, 1845	BIOPA	TOTAL	NIMBA TOTAL
887	P. lucretia		Cramer, 1775	BIOPA	TOTAL	NIMBA TOTAL
888	P. warburgi		Aurivillius, 1892	BIOPA	TOTAL	NIMBA TOTAL
889	P. hostilia		Drury, 1782		TOTAL	NIMBA TOTAL
900	P. semire		Cramer, 1779	BIOPA	TOTAL	NIMBA TOTAL
	NEPTIS Fabricius, 1807	7				
901	N. nemetes		Hewitson, 1868	BIOPA	TOTAL	NIMBA TOTAL
903	N. metella		Doubleday, 1848	BIOPA	TOTAL	NIMBA TOTAL
905	N. serena		Overlaet, 1955			NIMBA TOTAL
906	N. kiriakoffi		Overlaet, 1955			
907	N. morosa		Overlaet, 1955			NIMBA TOTAL
908	N. loma		Condamin, 1971		TOTAL	NIMBA TOTAL
909	N.constantiae					NIMBA TOTAL
910	N. angusta		Condamin, 1966			NIMBA TOTAL
911	N. alta		Overlaet, 1955		TOTAL	NIMBA TOTAL
912	N. seeldrayersi		Aurivillius, 1895			
913	N. puella		Aurivillius, 1894			NIMBA TOTAL
914	N. conspicua		Neave, 1904		TOTAL	NIMBA TOTAL
915	N. najo		Karsch, 1893			NIMBA TOTAL
916	N. metanira		Holland, 1892			
917	N. cf. continuata				TOTAL	NIMBA TOTAL
918	N. nysiades		Hewitson, 1868		TOTAL	NIMBA TOTAL
	N. nigra		Pierre-Baltus, 2007		TOTAL	NIMBA TOTAL
	N. stellata		Pierre-Baltus, 2007			
	N. viridis					NIMBA TOTAL
	N. lamtoensis					NIMBA TOTAL
	N. rosa					NIMBA TOTAL
	N. amieti					NIMBA TOTAL
921	N. nicomedes		Hewitson, 1874			
922	N. quintilla		Mabille, 1890	BIOPA	TOTAL	NIMBA TOTAL
926	N. paula		Staudinger, 1896	BIOPA	TOTAL	NIMBA TOTAL
927	N. strigata		Aurivillius, 1894			NIMBA TOTAL
929	N. nicoteles		Hewitson, 1874		TOTAL	NIMBA TOTAL
930	N. nicobule		Holland, 1892		TOTAL	NIMBA TOTAL
931	N. mixophyes		Holland, 1892			
933	N. nebrodes		Hewitson, 1874			
934	N. trigonophora	melicertula	Strand, 1912		TOTAL	NIMBA TOTAL
	N. vindo		Pierre-Baltus, 1978			
936	8		Pierre-Baltus, 1978		TOTAL	NIMBA TOTAL
937	N. melicerta		Drury, 1773			

938	N. troundi		Pierre-Baltus, 1978			
	Tribe Adoliadini Doub	leday, 1845	,			
	CATUNA Kirby, 1871	• ,				
941	C. crithea		Drury, 1773	BIOPA	TOTAL	NIMBA TOTAL
942	C. niji		Fox, 1965	BIOPA	TOTAL	NIMBA TOTAL
943	C. oberthueri		Karsch, 1894		TOTAL	NIMBA TOTAL
944	C. angustatum		Felder & Felder, 1867	BIOPA		NIMBA TOTAL
	EURYPHURA Staudin	ger, 1891				
946	E. togoensis		Suffert, 1904		TOTAL	NIMBA TOTAL
948	E. chalcis		Felder & Felder, 1860	BIOPA	TOTAL	NIMBA TOTAL
	EURYPHURANA Hece	q, 1992				
950	E. nobilis		Staudinger, 1891			
	HAMANUMIDA Hübr	ier, 1819				
951	H. daedalus		Fabricius, 1775	BIOPA	TOTAL	NIMBA TOTAL
	ATERICA Boisduval, 1	1833				
953	A. galene		Brown, 1776	BIOPA	TOTAL	NIMBA TOTAL
	CYNANDRA Schatz, 18	887				
954	C. opis		Drury, 1773	BIOPA	TOTAL	NIMBA TOTAL
	EURIPHENE Boisduv	al, 1847				
959	E. incerta		Aurivillius, 1912			
960	E. barombina		Aurivillius, 1894			
961	E. veronica		Stoll, 1870		TOTAL	NIMBA TOTAL
964	E. grosesmithi	muehlenbergi	Hecq, 1995			
968	E. simplex		Staudinger, 1891		TOTAL	NIMBA TOTAL
974	E. amicia	gola	Fox, 1965		TOTAL	NIMBA TOTAL
	E. amicia		Hewitson, 1871			
976	E. aridatha	feronia	Staudinger, 1891		TOTAL	NIMBA TOTAL
	E. aridatha	transgressa	Hecq, 1994			
	E. taigola		Sáfián & Warren-Gash, 2010		TOTAL	NIMBA TOTAL
978	E. coerulea		Boisduval, 1847		TOTAL	NIMBA TOTAL
982	E. lomaensis		Belcastro, 1986		TOTAL	NIMBA TOTAL
985	E. ernestibaumanni		Karsch, 1895			
986	E. gambiae		Feisthamel, 1850			
	E. gambiae	vera	Hecq, 2002	BIOPA	TOTAL	NIMBA TOTAL
987	E. ampedusa		Hewitson, 1866	BIOPA	TOTAL	NIMBA TOTAL
988	E. leonis		Aurivillius, 1898		TOTAL	NIMBA TOTAL
989	E. atossa		Hewitson, 1865		TOTAL	NIMBA TOTAL
990	E. doriclea		Drury, 1782		TOTAL	NIMBA TOTAL
	BEBEARIA Hemming,	, 1960				
994	,		Hecq, 1996			
995	B. tentyris		Hewitson, 1866			

006	R ocuris		Schultze 1020		TOTAL	NIMBA TOTAL
	B. osyris B. dallastai		Schultze, 1920 Hecq, 1994		IUIAL	NIMBA TOTAL
997	B. carshena		-	BIOPA		NIMBA TOTAL
998 999	B. absolon		Hewitson, 1871	ыога		NIMBA TOTAL
			Fabricius, 1793			NIMDA TOTAL
1001	B. zonara		Butler, 1871			NIMBA TOTAL
	B. mandinga B. oxione		Felder & Felder, 1860	BIOPA	TOTAL	
	B. abesa		Hewitson, 1866 Hewitson, 1869	ыога	IUIAL	NIMBA TOTAL
	B. barce		Doubleday, 1847		TOTAL	NIMBA TOTAL
	B. mardania		Fabricius, 1793		TOTAL	NIMBA TOTAL
	B. cocalia		Fabricius, 1793		TOTAL	NIMBA TOTAL
	B. paludicola	blandi	Holmes, 2001		IOIAL	NIMBA TOTAL
	B. senegalensis	bianai	Herrich-Schäffer, 1858			
	B. sophus	phreone	Feisthamel, 1850			
1014	B. sophus	рисоне	Fabricius, 1793	BIOPA	TOTAL	NIMBA TOTAL
1017	-		Fabricius, 1793	BIOPA	TOTAL	NIMBA TOTAL
	B. laetitia		Plötz, 1880	DIOTI	TOTAL	NIMBA TOTAL
	B. phantasina	ultima	Hecq, 1990		TOTAL	MINIDA TOTAL
1027	B. phantasina		Staudinger, 1891		TOTAL	NIMBA TOTAL
1029	B. demetra		Godart, 1824		TOTAL	NIMBA TOTAL
	B. demetra	obsolescens	Talbot, 1928			
1030	B. warrengashi		Hecq, 2000			
1031	B. inepta		Hecq, 2001			NIMBA TOTAL
1033	B. maledicta		Strand, 1912		TOTAL	NIMBA TOTAL
1035	B. ashantina		Dudgeon, 1913			
1037	B. cutteri	harleyi	Fox, 1968			
	B. cutteri	•	Hewitson, 1865			NIMBA TOTAL
	EUPHAEDRA Hübner	, 1819				
	Subgenus Proteuphaedi					
1042	E. aubergeri		Hecq, 1977			NIMBA TOTAL
	Subgenus Medoniana	Несq, 1976				
1046	E. medon	pholus	van der Hoeven, 1840			
	E. medon		Linnaeus, 1763	BIOPA	TOTAL	NIMBA TOTAL
	Subgenus Gausapia He	ecq, 1976				
1047	E. gausape		Butler, 1866	BIOPA	TOTAL	NIMBA TOTAL
1047a	E. mariaechristinae		Hecq & Joly, 2003			
1048	E. judith		Weymer, 1892			
1049	E. melpomene		Hecq, 1981		TOTAL	NIMBA TOTAL
1051	E. hastiri		Hecq, 1981			
1052	E. plantroui		Hecq, 1981			
	Subgenus Xypetana He	есq, 1976				

1055	E. xypete		Hewitson, 186	5	BIOPA	TOTAL	NIMBA TOTAL
1057	E. hebes		Hecq, 1980			TOTAL	NIMBA TOTAL
1059	E. diffusa	albocoerulea	Hecq, 1976				NIMBA TOTAL
1060	E. crossei	akani	Hecq & Joly, 2	004			
1061	E. crockeri		Butler, 1869		BIOPA	TOTAL	NIMBA TOTAL
	E. crockeri	umbratilis	Hecq, 1987				
	Subgenus Radia Hecq,	1976					
1062	E. eusemoides		Grose-Smith &	Kirby, 1889			NIMBA TOTAL
	Subgenus Euphaedra I	Hübner, 1819					
1064	E. cyparissa	nimbina	Cramer, 1775				NIMBA TOTAL
	E. cyparissa	tai	Hecq, 1986				
1065	E. sarcoptera	ferrea	Butler, 1871		BIOPA		NIMBA TOTAL
	E. sarcoptera	styx	Larsen & 2004	Warren-Gash,			
	Subgenus Euphaedrana	и Несq, 1976					
1066	E. themis	composita	Hecq, 1982				
	E. themis		Hübner, 1807		BIOPA	TOTAL	NIMBA TOTAL
1067	E. laboureana		de Toulgoët, 1	957			
	E. laboureana	eburnensis	Hecq, 1979		BIOPA	TOTAL	NIMBA TOTAL
1071	E. minuta		Hecq, 1982				NIMBA TOTAL
1072	E. modesta		Hecq, 1982				
1073	E. laguerrei		Hecq, 1979				
1074	E. dubreka		Collins & Lars	en, 2005			
1075	E. janetta		Butler, 1871		BIOPA	TOTAL	NIMBA TOTAL
1076	E. splendens	ghanaensis	Hecq & Joly, 2	.004			
1078	E. vetusta		Butler, 1871				NIMBA TOTAL
1079	E. aberrans		Staudinger, 18	91			
1083	E. ceres		Fabricius, 1775	5	BIOPA	TOTAL	NIMBA TOTAL
	E. ceres	lutescens	Hecq, 1979				
1084	E. afzelii		Felder & Felde	er, 1867			
1085	E. phaethusa	aurea	Hecq, 1983				
	E. phaethusa		Butler, 1866			TOTAL	NIMBA TOTAL
1086	E. inanum		Butler, 1873				
1087	E. villiersi		Condamin, 196	54			
1088	E. delera		Hecq, 1989				
1096	E. ignota		Hecq, 1996				
1097	E. tenebrosa		Hecq, 1983				NIMBA TOTAL
1103	E. velutina		Hecq, 1997				
1106	E. francina		Godart, 1824		BIOPA	TOTAL	NIMBA TOTAL
	E. francina	exuberans	Collins & Lars	en, 2005			
1108	E. eleus		Drury, 1782		BIOPA	TOTAL	NIMBA TOTAL

1112	E. zampa		Westwood, 1850	BIOPA		NIMBA TOTAL
1115	E. edwardsii		van der Hoeven, 1845	BIOPA		NIMBA TOTAL
1116	E. ruspina		Hewitson, 1865			
1117	E. perseis		Drury, 1773		TOTAL	NIMBA TOTAL
1118	E. harpalyce		Cramer, 1777		TOTAL	NIMBA TOTAL
1119	E. eupalus		Fabricius, 1781	BIOPA		NIMBA TOTAL
	EUPTERA Staudinger,	1891				
1121	E. crowleyi		Kirby, 1889			
1122	E. elabontas		Hewitson, 1871			
1123	E. dorothea		Bethune-Baker, 1904			
	E. dorothea	warrengashi	Libert, 2002			
1124	E. zowa		Fox, 1965			
1125	E. pluto	occidentalis	Chovet, 1998			
1132	E. plantroui		Chovet & Collins, 1998			
	PSEUDATHYMA Staud	linger, 1891				
1133	P. falcata		Jackson, 1969			
1134	P. sibyllina		Staudinger, 1890		TOTAL	NIMBA TOTAL
1137	P. neptidina		Karsch, 1894			
1138	P. martini		Collins, 2002			
	Subfamily Heliconiinae	Swainson, 1822				
	Tribe Acraeini Boisduve	al, 1833				
	ACRAEA Fabricius, 186	07				
	Subgenus Actinote Hüb	oner, 1816				
1139	A. perenna		Doubleday, 1847	BIOPA		NIMBA TOTAL
1144	A. circeis		Drury, 1782	BIOPA	TOTAL	NIMBA TOTAL
1147	A. translucida		Eltringham, 1912			
1148	A. peneleos		Ward, 1871	BIOPA		NIMBA TOTAL
1149	A. parrhasia		Fabricius, 1793	BIOPA	TOTAL	NIMBA TOTAL
1150	A. orina		Hewitson, 1874	BIOPA		NIMBA TOTAL
1152	A. pharsalus		Ward, 1871	BIOPA		NIMBA TOTAL
1153	A. encedon		Linnaeus, 1758		TOTAL	NIMBA TOTAL
1154	A. encedana		Pierre, 1976	BIOPA	TOTAL	NIMBA TOTAL
1155	A. alciope		Hewitson, 1852	BIOPA	TOTAL	NIMBA TOTAL
1156	A. aurivillii		Staudinger, 1896			
1157	A. jodutta		Fabricius, 1793	BIOPA	TOTAL	NIMBA TOTAL
1158	A. lycoa		Godart, 1819	BIOPA	TOTAL	NIMBA TOTAL
1159	A. serena		Fabricius, 1775	BIOPA	TOTAL	NIMBA TOTAL
1160	A. acerata		Hewitson, 1874			NIMBA TOTAL
1161	A. pseudepaea		Dudgeon, 1909		TOTAL	NIMBA TOTAL
1165	A. bonasia		Fabricius, 1775	BIOPA	TOTAL	NIMBA TOTAL
1167	A. orestia		Hewitson, 1874		TOTAL	NIMBA TOTAL

1168	A. polis		Pierre, 1999	BIOPA	TOTAL	NIMBA TOTAL
1169	A. vesperalis		Grose-Smith, 1890			
	Subgenus Acraea Fabr	ricius, 1807				
1172	A. kraka	kibi	Usher, 1986			
1173	A. rogersi			BIOPA	TOTAL	NIMBA TOTAL
1174	A. abdera	eginopsis	Aurivillius, 1898			
1176	A. egina		Cramer, 1775	BIOPA	TOTAL	NIMBA TOTAL
1178	A. pseudegina		Westwood, 1852		TOTAL	NIMBA TOTAL
1179	A. caecilia		Fabricius, 1781	BIOPA		NIMBA TOTAL
1180	A. zetes		Linnaeus, 1758	BIOPA	TOTAL	NIMBA TOTAL
1181	A. endoscota		le Doux, 1928	BIOPA	TOTAL	NIMBA TOTAL
1182	A. leucographa		Ribbe, 1889			
1184	A. quirina		Fabricius, 1781	BIOPA	TOTAL	NIMBA TOTAL
1185	A. neobule		Doubleday, 1847		TOTAL	NIMBA TOTAL
1186	A. eugenia		Karsch, 1893			
1187	A. camaena		Drury, 1773		TOTAL	NIMBA TOTAL
1188	A. vestalis		Felder & Felder, 1865	BIOPA	TOTAL	NIMBA TOTAL
1189	A. macaria		Fabricius, 1793	BIOPA	TOTAL	NIMBA TOTAL
1190	A. umbra	carpenteri	le Doux, 1937		TOTAL	NIMBA TOTAL
	A. umbra		Drury, 1782			
1191	A. alcinoe		Felder & Felder, 1865	BIOPA	TOTAL	NIMBA TOTAL
1192	A. consanguinea	sartina	Jordan, 1910			
1196	A. epaea		Cramer, 1779	BIOPA	TOTAL	NIMBA TOTAL
	Tribe Vagrantini Pinra	tana & Eliot, 1990	5			
	LACHNOPTERA Doub	bleday, 1847				
1199	L. anticlia		Hübner, 1819	BIOPA	TOTAL	NIMBA TOTAL
	PHALANTA Horsfield,	1829				
1200	P. phalantha	aethiopica	Rothschild & Jordan, 1903			NIMBA TOTAL
1201	P. eurytis		Doubleday, 1847	BIOPA	TOTAL	NIMBA TOTAL
	Superfamily HESPERI	OIDEA Latreille,	1809			
	Family HESPERIIDAL	E Latreille, 1809				
	Subfamily Coeliadinae	Evans, 1937				
	COELIADES Hübner,	1818				
1203	C. chalybe		Westwood, 1852		TOTAL	NIMBA TOTAL
1204	C. bixana		Evans, 1940			
1205	C. aeschylus		Plötz, 1884			
1206	C. libeon		Druce, 1875			
1207	C. forestan		Stoll, 1782	BIOPA	TOTAL	NIMBA TOTAL
1208	C. pisistratus		Fabricius, 1793		TOTAL	NIMBA TOTAL
1209	C. hanno		Plötz, 1879		TOTAL	NIMBA TOTAL
	PYRRHIADES Lindsey	& Miller, 1965				

1210	P. lucagus		Cramer, 1777			
	PYRRHOCHALCIA M	abille, 1904				
1211	P. iphis		Drury, 1773			
	Subfamily Pyrginae B	urmeister, 1878				
	LOXOLEXIS Karsch,	1895				
1212	L. holocausta		Mabille, 1891			
1213	L. dimidia		Holland, 1896			
1214	L. hollandi		Druce, 1909			
	KATREUS Watson, 18	93				
1215	K. johnstonii		Butler, 1888	BIOPA		NIMBA TOTAL
	CELAENORRHINUS	Hübner, 1819				
1216	C. rutilans		Mabille, 1877		TOTAL	NIMBA TOTAL
1217	C. sagamase		Collins & Larsen, 2005			
1219	C. leona		Berger, 1975	BIOPA	TOTAL	NIMBA TOTAL
1222	C. nimba		Collins & Larsen, 2000			
1223	C. ankasa		Larsen & Miller, 2005			
1224	C. galenus		Fabricius, 1793	BIOPA		NIMBA TOTAL
1225	C. cf galenus					NIMBA TOTAL
1226	C. meditrina		Hewitson, 1877			
1227	C. ovalis		Evans, 1937		TOTAL	NIMBA TOTAL
1230	C. proxima	maesseni	Berger, 1976	BIOPA		NIMBA TOTAL
1231	C. plagiatus		Berger, 1976	BIOPA	TOTAL	NIMBA TOTAL
	C. sagamase					
	TAGIADES Hübner, 1	819				
1232	T. flesus		Fabricius, 1781	BIOPA	TOTAL	NIMBA TOTAL
	EAGRIS Guenée, 1863	•				
1233	E. denuba		Plötz, 1879	BIOPA	TOTAL	NIMBA TOTAL
1234	E. decastigma		Mabille, 1891			NIMBA TOTAL
1235	E. tigris	liberti	Larsen & Collins, 2005			
1236	E. subalbida		Holland, 1893			
1237	E. hereus	quaterna	Mabille, 1890		TOTAL	NIMBA TOTAL
1238	E. tetrastigma	subolivescens	Holland, 1892			NIMBA TOTAL
	CALLEAGRIS Aurivil	lius, 1925				
1239	C. lacteus	dannatti	Mabille, 1877		TOTAL	NIMBA TOTAL
1240	C. landbecki		Druce, 1910		TOTAL	NIMBA TOTAL
	PROCAMPTA Holland	d, 1892				
1241	P. rara		Holland, 1892		TOTAL	NIMBA TOTAL
	ERETIS Mabille, 1891					
1242	E. lugens		Rogenhofer, 1891			NIMBA TOTAL
1243	E. plistonicus		Plötz, 1879		TOTAL	NIMBA TOTAL
1244	E. melania		Mabille, 1891			NIMBA TOTAL

	SARANGESA Moore,	1881				
1245	S. laelius		Mabille, 1877			
1246	S. phidyle		Walker, 1870			
	S. tertullianus		Fabricius, 1793		TOTAL	NIMBA TOTAL
1248	S. majorella		Mabille, 1891			
1249	S. tricerata		Mabille, 1891		TOTAL	NIMBA TOTAL
1250	S. thecla		Plötz, 1879		TOTAL	NIMBA TOTAL
1251	S. bouvieri		Mabille, 1877		TOTAL	NIMBA TOTAL
1252	S. brigida		Plötz, 1879			NIMBA TOTAL
	CAPRONA Wallengre	n, 1857				
1253	C. adelica		Karsch, 1892			
1254	C. pillaana		Wallengren, 1857			
	NETROBALANE Mak	pille, 1903				
1255	N. canopus		Trimen, 1864			
	ABANTIS Hopffer, 18.	55				
1256	A. bismarcki		Karsch, 1892			
1257	A. leucogaster		Mabille, 1890			
1258	A. nigeriana		Butler, 1901			
1259	A. pseudonigeriana		Usher, 1984			
1261	A. lucretia		Druce, 1909		TOTAL	NIMBA TOTAL
1262	A. elegantula		Mabille, 1890		TOTAL	NIMBA TOTAL
1263	A. ja	usheri	Collins & Larsen, 2008			
1263a	A. tanobia		Collins & Larsen, 2005			NIMBA TOTAL
	SPIALIA Swinhoe, 19	12				
1265	S. spio		Linnaeus, 1767			
1266	S. doris	daphne	Evans, 1949			
1267	S. diomus		Hopffer, 1855			
1268	S. dromus		Plötz, 1884			
1269	S. ploetzi	occidentalis	de Jong, 1977	BIOPA	TOTAL	NIMBA TOTAL
	GOMALIA Moore, 182	79				
1270	G. elma	elma	Trimen, 1862			
	Subfamily Heteropterin	nae Aurivillius, 1	925			
	METISELLA Hemmin	eg, 1934				
1274	M. tsadicus		Aurivillius, 1905			
	Subfamily Hesperiinae	Latreille, 1809				
	ASTICTOPTERUS Fe	lder & Felder, 186	60			
1276	A. anomoeus		Plötz, 1879			NIMBA TOTAL
1277	A. abjecta		Snellen, 1872			NIMBA TOTAL
12//						
	PROSOPALPUS Holle	and, 1896				
	PROSOPALPUS Hollo P. debilis	and, 1896	Plötz, 1879			

1280	P. saga	Evans, 1937		
	KEDESTES Watson, 1893	·		
1281	K. protensa	Butler, 1901		
	GORGYRA Holland, 1896			
1284	G. aretina	Hewitson, 1878		
1285	G. heterochrus	Mabille, 1890	TOTAL	NIMBA TOTAL
1286	G. mocquerysii	Holland, 1896	TOTAL	NIMBA TOTAL
1287	G. aburae	Plötz, 1879		
1289	G. bina	Evans, 1937	TOTAL	NIMBA TOTAL
1290	G. sola	Evans, 1937		
1291	G. afikpo	Druce, 1909		
1292	G. diversata	Evans 1937		
1293	G. bule	Miller, 1964		
1294	G. minima	Holland, 1896		
1295	G. sara	Evans, 1937	TOTAL	NIMBA TOTAL
1296	G. subfacatus	Mabille, 1889	TOTAL	NIMBA TOTAL
1297	G. pali	Evans, 1937	TOTAL	NIMBA TOTAL
	GYROGRA Lindsey & Miller, 1965			
1299	G. subnotata	Holland, 1894	TOTAL	NIMBA TOTAL
	CERATRICHIA Butler, 1870			
1301	C. phocion	Fabricius, 1781	TOTAL	NIMBA TOTAL
1302	C. semilutea	Mabille, 1891		NIMBA TOTAL
1303	C. clara	Evans, 1937		
1305	C. crowleyi	Riley, 1925	TOTAL	NIMBA TOTAL
1306	C. nothus	Fabricius, 1787	TOTAL	NIMBA TOTAL
	C. nothus enantia	Karsch, 1893		
1307	C. argyrosticta	Plötz, 1879		
1308	C. maesseni	Miller, 1971	TOTAL	NIMBA TOTAL
	TENIORHINUS Holland, 1892			
1309	T. watsoni	Holland, 1892	TOTAL	NIMBA TOTAL
1310	T. ignita	Mabille, 1877		
	PARDALEODES Butler, 1870			
1311	P. incerta murcia	Plötz, 1883 BIOPA	TOTAL	NIMBA TOTAL
1312	P. edipus	Stoll, 1781	TOTAL	NIMBA TOTAL
1313	P. sator	Westwood, 1852	TOTAL	NIMBA TOTAL
1314	P. tibullus	Fabricius, 1793		NIMBA TOTAL
1315	P. xanthopeplus	Holland, 1892		
	XANTHODISCA Aurivillius, 1925			
1317	X. rega	Mabille, 1890	TOTAL	NIMBA TOTAL
1318	X. astrape	Holland, 1892		
	PAROSMODES Holland, 1896			

1320	P. morantii	axis	Evans, 1937			
		uxis	Holland, 1896			NIMBA TOTAL
1321	P. lentiginosa RHABDOMANTIS 1	Holland 1906	Holland, 1890			NIMIDA TOTAL
1322	R. galatia	1011ana, 1070	Hewitson, 1868	BIOPA	TOTAL	NIMBA TOTAL
	R. sosia		Mabille, 1891	DIOI /I	TOTAL	NIMBA TOTAL
1323	OSMODES Holland,	1802	Waome, 1071		TOTAL	NIMBA TOTAL
1324	O. laronia	, 1072	Hewitson, 1868		TOTAL	NIMBA TOTAL
	O. omar		Swinhoe, 1916		TOTAL	NIMBA TOTAL
	O. lux		Holland, 1892			NIMBA TOTAL
	O. thora		Plötz, 1884			NIMBA TOTAL
	O. distincta		Holland, 1896		TOTAL	NIMBA TOTAL
	O. adon		Mabille, 1890		101112	111111111111111111111111111111111111111
	O. adosus		Mabille, 1890		TOTAL	NIMBA TOTAL
	O. lindseyi	occidentalis	Miller, 1971		TOTAL	NIMBA TOTAL
	O. costatus		Aurivillius, 1896		101112	
	O. banghaasi		Holland, 1896			
	OSPHANTES Hollar	nd, 1896	,			
1336	O. ogowena	,	Mabille, 1891			
	PARACLEROS Berg	ger, 1978				
1337	P. placidus		Plötz, 1879			NIMBA TOTAL
1338	P. biguttulus		Mabille, 1890			NIMBA TOTAL
1339	P. substrigata		Holland, 1893			NIMBA TOTAL
1340	P. maesseni		Berger, 1978			
	ACLEROS Mabille,	1885				
1341	A. ploetzi		Mabille, 1890		TOTAL	NIMBA TOTAL
1342	A. mackenii	olaus	Plötz, 1884			NIMBA TOTAL
1343	A. nigrapex		Strand, 1913		TOTAL	NIMBA TOTAL
	SEMALEA Holland,	1896				
1345	S. pulvina		Plötz, 1879			NIMBA TOTAL
1346	S. sextilis		Plötz, 1886			
1347	S. atrio		Mabille, 1891		TOTAL	NIMBA TOTAL
1349	S. arela		Mabille, 1891			NIMBA TOTAL
	HYPOLEUCIS Mab	ille, 1891				
1350	H. ophiusa		Hewitson, 1866			NIMBA TOTAL
1351	H. tripunctata		Mabille, 1891		TOTAL	NIMBA TOTAL
1352	H. sophia		Evans, 1937			
	MEZA Hemming, 19	939				
1353	M. indusiata		Mabille, 1891			NIMBA TOTAL
	M. meza		Hewitson, 1877		TOTAL	NIMBA TOTAL
1355	M. mabea		Holland, 1893			
1356	M. leucophaea	bassa	Lindsey & Miller, 1965			NIMBA TOTAL

1357	M. elba	Evans, 1937	TOTAL	NIMBA TOTAL
1358	M. mabillei	Holland, 1894	TOTAL	NIMBA TOTAL
1359	M. cybeutes volta	Miller, 1971		NIMBA TOTAL
	PARONYMUS Aurivillius, 1925			
1361	P. xanthias	Mabille, 1891	TOTAL	NIMBA TOTAL
1363	P. ligora	Hewitson, 1876		
1364	P. nevea	Druce, 1910	TOTAL	NIMBA TOTAL
	ANDRONYMUS Holland, 1896			
1365	A. neander	Plötz, 1884		NIMBA TOTAL
1367	A. caesar	Fabricius, 1793		NIMBA TOTAL
1368	A. hero	Evans, 1937		NIMBA TOTAL
1369	A. helles	Evans, 1937		NIMBA TOTAL
1370	A. evander	Mabille, 1890		NIMBA TOTAL
	A.cf.fenestrella			NIMBA TOTAL
	ZOPHOPETES Mabille, 1904			
1373	Z. ganda	Evans, 1937		
1374	Z. cerymica	Hewitson, 1867	TOTAL	NIMBA TOTAL
1375	Z. haifa	Evans, 1937		
1376	Z. quaternata	Mabille, 1876		
	GAMIA Holland, 1896			
1377	G. buchholzi	Plötz, 1879		
1378	G. shelleyi	Sharpe, 1890		
	ARTITROPA Holland, 1896			
1379	A. comus	Stoll, 1782	TOTAL	NIMBA TOTAL
	MOPALA Evans, 1937			
1380	M. orma	Plötz, 1879		
	GRETNA Evans, 1937			
1381	G. waga	Plötz, 1886		NIMBA TOTAL
	G.dargei			NIMBA TOTAL
1382	G. carmen	Evans, 1937		
1383	G. cylinda	Hewitson, 1876	TOTAL	NIMBA TOTAL
1385	G. lacida	Hewitson, 1876		
1386	G. balenge zowa	Lindsey & Miller, 1965		
	PTEROTEINON Watson, 1893			
1387	P. laufella	Hewitson, 1868		NIMBA TOTAL
1388	P. iricolor	Holland, 1890		
	P. laterculus	Holland, 1890		NIMBA TOTAL
	P. capronnieri	Plötz, 1879		
1391	P. caenira	Hewitson, 1867	BIOPA	NIMBA TOTAL
	P. ceucaenira	Druce, 1910		
1393	P. concaenira	Belcastro & Larsen, 1996		

1204	D.	F 1027		
1394	P. pruna	Evans, 1937		
1205	LEONA Evans, 1937	M 1 'II 1901		
	L. binoevatus	Mabille, 1891		
	L. maracanda	Hewitson, 1876		
	L. lota	Evans, 1937		
	L. lena	Evans, 1937		
	L. leonora	Plötz, 1879		
1400		Lindsey & Miller, 1965		
	L. stoehri	Karsch, 1893		
	L. meloui	Riley, 1926		
	L. halma	Evans, 1937		
1405	L. luehderi	Plötz, 1879		
1.406	CAENIDES Holland, 1896	II ' 1976		NIMPATOTAL
	C. soritia	Hewitson, 1876		NIMBA TOTAL
	C. kangvensis	Holland, 1896		1114D 4 mom44
	C. xychus	Mabille, 1891		NIMBA TOTAL
	C. benga	Holland, 1891		
	C. otilia	Belcastro, 1990		
	C. dacenilla	Aurivillius, 1925		
	C. dacela	Hewitson, 1876	TOTAL	NIMBA TOTAL
	C. hidaroides	Aurivillius, 1896		NIMBA TOTAL
1414	C. dacena	Hewitson, 1876		NIMBA TOTAL
	MONZA Evans, 1937			
1415	M. alberti	Holland, 1896	TOTAL	NIMBA TOTAL
1416	M. cretacea	Snellen, 1872	TOTAL	NIMBA TOTAL
	MELPHINA Evans, 1937			
	M. noctula	Druce, 1909	TOTAL	NIMBA TOTAL
1418	M. melphis	Holland, 1893	TOTAL	NIMBA TOTAL
1419	M. unistriga	Holland, 1893		
1420	M. tarace	Mabille, 1891	TOTAL	NIMBA TOTAL
1421	M. flavina	Lindsey & Miller, 1965	TOTAL	NIMBA TOTAL
1422	M. statirides	Holland, 1896		
1423	M. statira	Mabille, 1891	TOTAL	NIMBA TOTAL
1425	M. malthina	Hewitson, 1876	TOTAL	NIMBA TOTAL
1426	M. maximiliani	Belcastro & Larsen, 2005		
	FRESNA Evans, 1937			
1427	F. netopha	Hewitson, 1878	TOTAL	NIMBA TOTAL
1428	F. maesseni	Miller, 1971		NIMBA TOTAL
1429	F. nyassae	Hewitson, 1878	TOTAL	NIMBA TOTAL
1430	F. cojo	Karsch, 1893		
1431	F. carlo	Evans, 1937	TOTAL	NIMBA TOTAL

	PLATYLESCHES Holle	and, 1896			
1432	P. galesa		Hewitson, 1877	TOTAL	NIMBA TOTAL
1433	P. robustus	fofi	Larsen & Mei, 1998		
1434	P. moritili		Wallengren, 1857		
1435	P. rossii		Belcastro, 1986	TOTAL	NIMBA TOTAL
1436	P. langa		Evans, 1937		
1437	P. picanini		Holland, 1894	TOTAL	NIMBA TOTAL
1438	P. lamba		Neave, 1910		
1439	P. affinissima		Strand, 1921	TOTAL	NIMBA TOTAL
1440	P. chamaeleon		Mabille, 1891	TOTAL	NIMBA TOTAL
	P.morigambia				NIMBA TOTAL
1441	P. batangae		Holland, 1894		
1442	P. iva		Evans, 1937		
	PELOPIDAS Walker, 1870				
1444	P. mathias		Fabricius, 1798		NIMBA TOTAL
1445	P. thrax		Hübner, 1821		NIMBA TOTAL
	BORBO Evans, 1949				
1446	B. fallax		Gaede, 1916		
1447	B. fanta		Evans, 1937		
1448	B. perobscura		Druce, 1912	TOTAL	NIMBA TOTAL
1449	B. micans		Holland, 1896		
1450	B. borbonica		Boisduval, 1833		NIMBA TOTAL
1451	B. gemella		Mabille, 1884		NIMBA TOTAL
1452	B. binga		Evans, 1937		
1453	B. fatuellus		Hopffer, 1855	TOTAL	NIMBA TOTAL
1454	B. holtzi		Plötz, 1883		
1455	B. liana		Evans, 1937		
	PARNARA Moore, 188	1			
1456	P. monasi		Trimen, 1889		
	GEGENES Hübner, 1819				
1457	G. 'pumilio'	gambica	Mabille, 1878		
1458	G. nostrodamus		Fabricius, 1793		
1459	G. niso	brevicornis	Plötz, 1884		NIMBA TOTAL
1460	G. hottentota		Latreille, 1824		NIMBA TOTAL